[1] Chan, K., & McAleer, M. (2002). Maximum likelihood estimation of STAR and STARGARCH models: Theory and Monte Carlo Evidence. Journal of applied Econometrics, 17, 509-534.
[2] Chan, F., & Theoharakis, B. (2011). Estimating m-regimes STAR-GARCH model using QMLE with parameter transformation. Journal of Mathematics and Computers in Simulation, 18(7), 1385-1396.
[3] Chan, K., & Tong, H. (1986). On estimating thresholds in autoregressive models. Journal of Time Series Analysis, 7(3), 179-190. DOI: 10.1111/j.1467-9892.1986.tb00501.
[4] Chung, S. H. (1998). Modi ed maximum likelihood estimation. Journal of Communications in Statistics - Theory and Methods, 27(12), 2925-2942. DOI: 10.1080/03610929808832264.
[5] Dijk, V. D., Ter~A¤svirta, T, & Franses, P. (2002). Smooth transition autoregressive models-A survey of recent developments. Journal of Econ. Rev, 21, 1-47.
[6] Feissolle, A. P. (1994). Bayesian estimation and forecasting in non-linear models application to an LSTAR model. Journal of Economics Letters, 46(3), 187-194. DOI:10.1016/0165-1765(94)00478-1.
[7] Lopes, H. F., & Salazar, E. (2006). Bayesian model uncertainty in smooth transition autoregressions. Journal of Time Series Analysis, 27(1), 99-117. DOI: 10.1111/j.1467-9892.2005.00455.x.
[8] Midilic, M. (2020). Estimation of STARGARCH models with iteratively weighted least squares. Computational Economics, 55, 87-117.
[9] Schleer, F. (2016). Finding starting-values for the estimation of vector STAR models. Journal of Econometrics, 3, 65-90. DOI: 10.3390/econometrics3010065.
[10] Saputro, D. R. S., Pratiwi, N. B. I, & Kusumawati, R. (2022). Logistic smooth transition autoregressive model parameter estimation using Gauss Newton. In American Institute of Physics Conference Series, 2479(1), p. 020031.
https://doi.org/10.1063/5.0100105.
[11] Terasvirta, T. (1994). Speci cation, estimation, and evaluation of smooth transition autoregressive models. Journal of the American Statistical Association, 89(425), 208-218. DOI: 10.1080/01621459.1994.10476462.
[12] Terasvirta, T., & Anderson, H. M. (1992). Characterizing nonlinearities in business cycles using smooth transition autoregressive models. Journal of Applied Econometrics, 7, 119-136. DOI: 10.1002/jae.3950070509.
[13] Tiku, M. L. (1967). Estimating the mean and standard deviation from a censored normal sample. Journal of the Biometrica, 54, 155-165.
[14] Yaya, S., & Shitu, I. (2016). Symmetric variants of logistic smooth transition autoregressive models: Monte Carlo evidences. Journal of Modern Applied Statistical Methods, 15(1), 711-737.
[15] Zamani, S., & Sayyareh, A. (2017). Separated hypotheses testing for autoregressive models with non-negative residuals. Journal of Statistical Computation and Simulation, 87(4), 689-711.