[2] Ahmad, Z., Elgarhy, M. & Nasir Abbas, (2020). A new extended alpha power transformed family of distributions: properties and applications, Journal of Statistical Modelling: Theory and Applications, 1, 13-27.
https://doi.org/10.22034/jsmta.2020.1706
[4] Alizadeh, M., Bagheri, S. F., Samani, E. B., Ghobadi, S., & Nadarajah, S. (2018). Exponentiated power Lindley power series class of distributions: Theory and applications. Communications in Statistics: Simulation and Computation, 47, 2499-2531.
https://doi.org/10.1080/03610918.2017.1350270
[5] Alizadeh, M., Tahmasebi, S., & Haghbin, H. (2020). The exponentiated odd log-logistic family of distributions: properties and applications. Journal of Statistical Modelling: Theory and Applications, 1, 29-52.
https://doi.org/10.22034/jsmta.2020.1707
[7] Bagheri, S. F., Samani, E. B., & Ganjali. M. (2016). The generalized modi ed Weibull power series distribution: Theory and applications. Computational Statistics and Data Analysis, 94, 136-160.
[11] Cordeiro, G. M., Ortega, E. M. M., & Silva, G. O. (2011). The exponentiated generalized gamma distribution with application to lifetime data. Journal of Statistical Computation and Simulation, 81, 827-842.
https://doi.org/10.1080/00949650903517874
[13] Gui, W., Zhang S., & Lu, X. (2014). The Lindley-Poisson distribution in life-time analysis and its properties. Journal of Mathematics and Statistics, 10-63.
https://doi.org/10.15672/HJMS.201427453
[14] Hassan, A., Akhtar, N., Rashid, A., & Iqbal, A. (2021). A New Compound Lifetime Distribution: Ishita Power Series Distribution with Properties and Applications. Journal of Statistics Applications and Probability, 10(3), 883-896.
http://dx.doi.org/10.18576/jsap/100324
[16] Lindley, D.V. (1958). Fiducial distributions and Bayes' theorem. Journal of the Royal Statistical Society, Series B (Methodological), 20, 102-107.
https://www.jstor.org/stable/2983909
[17] Mahmoodian, H. (2020). Power Normal-Geometric Distribution: Model, Properties and Applications. Journal of Statistical Research of Iran, 17(1), 95-111.
https://doi.org/10.52547/jsri.17.1.95
[20] Moako , T., Oluyede, B., Chipepa, F., & Makubate, B. (2021). Odd power generalized Weibull-G family of distributions: Model, properties and applications. Journal of Statistical Modelling: Theory and Applications, 2, 121-142.
https://doi.org/10.22034/jsmta.2021.2333
[23] Rahman, M. M., Al-Zahrani, B., & Shahbaz, M. Q. (2018). A general transmuted family of distributions. Pakistan Journal of Statistics and Operation Research, 14(2), 451-469.
https://doi.org/10.18187/pjsor.v14i2.2334
[24] Roozegar, R., Hamedani, G. G., Amiri, L., & Esfandiyari, F. (2020). A New Family of Lifetime Distributions: Theory, Application and Characterizations. Annals of Data Science, 7, 109-138.
https://doi.org/10.1007/s40745-019-00216-5
[25] Shakhatreh, M.K., Dey, S., & Kumar, D. (2022). Inverse Lindley power series distributions: a new compounding family and regression model with censored data. Journal of Applied Statistics, 49, 3451-3476.
https://doi.org/10.1080/02664763.2021.1951683
[26] Silva, R. B., Bourguignon, M., Dias, C. R. B., & Cordeiro, G. M. (2013). The compound class of extended Weibull power series distributions. Computational Statistics and Data Analysis, 58, 352-367.
https://doi.org/10.1016/j.csda.2012.09.009
[27] Silva, R. B., Bourguignon, M., & Cordeiro, G. M. (2016). A new compounding family of distributions: The generalized gamma power series distributions. Journal of Computational and Applied Mathematics, 303, 119-139.
https://doi.org/10.1016/j.cam.2016.02.033
[28] Smith, R. L., & Naylor, J. C. (1987). A comparison of maximum likelihood and Bayesian estimators for the three parameter Weibull distribution. Journal of the Royal Statistical Society. Series C (Applied Statistics), 36, 358-369.
https://doi.org/10.2307/2347795
[31] Warahena-Liyanag, G., & Pararai, M. (2015). The Lindley power series class of distributions: model, properties and applications. Journal of Computations and Modeling, 5, 35-80.
https://doi.org/10.9734/BJMCS/2016/21903
[33] Zhang, R. (2004). A new three-parameter lifetime distribution with bathtub shape or increasing failure rate function and a ood data application. Concordia University, Canada.