On the Zhang-power series distributions with application to lifetime modeling

Document Type : Research Paper

Authors

Department of Statistics, University of Birjand, Birjand, Iran

Abstract

Many recent probability distributions are introduced by compounding the well-known continuous distributions  with the power series distribution.   In this paper, we provide a general closed-form expression  for the cumulative distribution function of this class. Then, we introduce  a new four parameter lifetime distribution called  Zhang-power series (ZPS) distribution. This distribution is very useful in the lifetime, reliability and extreme-value data analysis. The distribution properties including survival function, hazard function and limiting behavior of the probability density  and hazard functions are studied. The method of maximum likelihood estimation is used to estimate the model parameters. Applications to real data sets are given to show the flexibility and potentiality of the proposed model.

Keywords

Main Subjects


[1] Adamidis, K., & Loukas, S. (1998). A lifetime distribution with decreasing failure rate. Statistics and Probability Letters, 39, 35-42. https://doi.org/10.1016/S0167-7152(98)00012-1
[2] Ahmad, Z., Elgarhy, M. & Nasir Abbas, (2020). A new extended alpha power transformed family of distributions: properties and applications, Journal of Statistical Modelling: Theory and Applications, 1, 13-27. https://doi.org/10.22034/jsmta.2020.1706
[3] Alizadeh, M., Bagheri, S. F., Alizadeh, M., & Nadarajah, S. (2017). A new four-parameter lifetime distribution. Journal of Applied Statistics, 44(5), 767-797. https://doi.org/10.1080/02664763.2016.1182137
[4] Alizadeh, M., Bagheri, S. F., Samani, E. B., Ghobadi, S., & Nadarajah, S. (2018). Exponentiated power Lindley power series class of distributions: Theory and applications. Communications in Statistics: Simulation and Computation, 47, 2499-2531. https://doi.org/10.1080/03610918.2017.1350270
[5] Alizadeh, M., Tahmasebi, S., & Haghbin, H. (2020). The exponentiated odd log-logistic family of distributions: properties and applications. Journal of Statistical Modelling: Theory and Applications, 1, 29-52. https://doi.org/10.22034/jsmta.2020.1707
[6] Asgharzadeh, A., Bakouch, H. S., Nadarajah, S., & Esmaeili, L. (2014). A new family of compound lifetime distributions. Kybernetika, 50, 142-169. https://doi.org/10.14736/kyb-2014-1-0142
[7] Bagheri, S. F., Samani, E. B., & Ganjali. M. (2016). The generalized modi ed Weibull power series distribution: Theory and applications. Computational Statistics and Data Analysis, 94, 136-160.
[8] Chahkandi, M., & Ganjali, M. (2009). On some lifetime distributions with decreasing failure rate. Computational Statistics and Data Analysis, 53, 4433-4440. https://doi.org/10.1016/j.csda.2009.06.016
[9] Chen, Z. (2000). A new two-parameter Lifetime distribution with bathtub shape or increasing failure rate function. Statistics and Probability Letters, 49, 155-161. https://doi.org/10.1016/S0167-7152(00)00044-4
[10] Chen, G., & Balakrishnan, N. (1995). A general purpose approximate goodness-of- t test. Journal of Quality Technology, 27, 154-161. https://doi.org/10.1080/00224065.1995.11979578
[11] Cordeiro, G. M., Ortega, E. M. M., & Silva, G. O. (2011). The exponentiated generalized gamma distribution with application to lifetime data. Journal of Statistical Computation and Simulation, 81, 827-842. https://doi.org/10.1080/00949650903517874
[12] Faton, M., & Elbatal, I. (2015). Weibull Rayleigh distribution: Theory and applications. Applied Mathematics and Information Sciences, 5, 1-11. https://dx.doi.org/10.12785/amis/paper
[13] Gui, W., Zhang S., & Lu, X. (2014). The Lindley-Poisson distribution in life-time analysis and its properties. Journal of Mathematics and Statistics, 10-63. https://doi.org/10.15672/HJMS.201427453
[14] Hassan, A., Akhtar, N., Rashid, A., & Iqbal, A. (2021). A New Compound Lifetime Distribution: Ishita Power Series Distribution with Properties and Applications. Journal of Statistics Applications and Probability, 10(3), 883-896.
http://dx.doi.org/10.18576/jsap/100324
[15] Kus, C. (2007). A new lifetime distribution. Computational Statistics and Data Analysis, 51, 4497-4509. https://doi.org/10.1016/j.csda.2006.07.017
[16] Lindley, D.V. (1958). Fiducial distributions and Bayes' theorem. Journal of the Royal Statistical Society, Series B (Methodological), 20, 102-107. https://www.jstor.org/stable/2983909
[17] Mahmoodian, H. (2020). Power Normal-Geometric Distribution: Model, Properties and Applications. Journal of Statistical Research of Iran, 17(1), 95-111. https://doi.org/10.52547/jsri.17.1.95
[18] Mahmoudi, E., & Sepahdar, A. (2013). Exponentiated Weibull-Poisson distribution: Model, properties and applications. Mathematics and Computers in Simulation, 92, 76-97. https://doi.org/10.1016/j.matcom.2013.05.005
[19] Mahmoudi, E., Sepahdar, A., & Lemonte, A. (2014). Exponentiated Weibull-logarithmic distribution: model, properties and applications. https://doi.org/10.48550/arXiv.1402.5264
[20] Moako , T., Oluyede, B., Chipepa, F., & Makubate, B. (2021). Odd power generalized Weibull-G family of distributions: Model, properties and applications. Journal of Statistical Modelling: Theory and Applications, 2, 121-142.
https://doi.org/10.22034/jsmta.2021.2333
[21] Morais, A. L., & Barreto-Souza, W. (2011). A compound class of Weibull and power series distributions. Computational Statistics and Data Analysis, 55, 1410-1425. https://doi.org/10.1016/j.csda.2010.09.030
[22] Pandey, A. K., Ali, A., & Pathak, A. K. (2024). On generalized transmuted lifetime distribution. https://doi.org/10.48550/arXiv.2405.11624
[23] Rahman, M. M., Al-Zahrani, B., & Shahbaz, M. Q. (2018). A general transmuted family of distributions. Pakistan Journal of Statistics and Operation Research, 14(2), 451-469. https://doi.org/10.18187/pjsor.v14i2.2334
[24] Roozegar, R., Hamedani, G. G., Amiri, L., & Esfandiyari, F. (2020). A New Family of Lifetime Distributions: Theory, Application and Characterizations. Annals of Data Science, 7, 109-138. https://doi.org/10.1007/s40745-019-00216-5
[25] Shakhatreh, M.K., Dey, S., & Kumar, D. (2022). Inverse Lindley power series distributions: a new compounding family and regression model with censored data. Journal of Applied Statistics, 49, 3451-3476. https://doi.org/10.1080/02664763.2021.1951683
[26] Silva, R. B., Bourguignon, M., Dias, C. R. B., & Cordeiro, G. M. (2013). The compound class of extended Weibull power series distributions. Computational Statistics and Data Analysis, 58, 352-367. https://doi.org/10.1016/j.csda.2012.09.009
[27] Silva, R. B., Bourguignon, M., & Cordeiro, G. M. (2016). A new compounding family of distributions: The generalized gamma power series distributions. Journal of Computational and Applied Mathematics, 303, 119-139.
https://doi.org/10.1016/j.cam.2016.02.033
[28] Smith, R. L., & Naylor, J. C. (1987). A comparison of maximum likelihood and Bayesian estimators for the three parameter Weibull distribution. Journal of the Royal Statistical Society. Series C (Applied Statistics), 36, 358-369. https://doi.org/10.2307/2347795
[29] Soliman Hassan, a. & Abd-Allah, M. (2023). Power Quasi Lindley Power Series Class of Distributions:Theory and Applications. Thailand Statistician, 21(2), 314-336. http://dx.doi.org/10.1016/j.jare.2014.08.005
[30] Tahmasbi, R., & Rezaei, S. (2008). A two-parameter lifetime distribution with decreasing failure rate. Computational Statistics and Data Analysis, 52, 3889-3901. https://doi.org/10.1016/j.csda.2007.12.002
[31] Warahena-Liyanag, G., & Pararai, M. (2015). The Lindley power series class of distributions: model, properties and applications. Journal of Computations and Modeling, 5, 35-80. https://doi.org/10.9734/BJMCS/2016/21903
[32] Zakerzadeh, H., & Mahmoudi, E. (2012). A new two parameter lifetime distribution: model and properties, arXiv preprint arXiv:1204.4248. https://doi.org/10.48550/arXiv.1204.4248
[33] Zhang, R. (2004). A new three-parameter lifetime distribution with bathtub shape or increasing failure rate function and a ood data application. Concordia University, Canada.