[3] Antony, M.J., Sankaralingam, B.P., Mahendran, R.K., Gardezi, A.A., Sha q, M., Choi, J.G., & Hamam, H. (2022). Classi cation of EEG using adaptive SVM classi er with CSP and online recursive independent component analysis. Sensors (Basel, Switzerland), 22(19), 7596.
https://doi.org/10.3390/s22197596
[5] Bouezmarni, T., & Rolin, J.M. (2003). Consistency of the beta kernel density function estimator. The Canadian Journal of Statistics, 31(1), 89-98.
https://doi.org/10.2307/3315905
[7] Charpentier, A., Fermanian, J.D., & Scaillet, O. (2007). The estimation of copulas: Theory and practice. In: Jorn Rank Copulas: From Theory to Application in Finance, 35-64. Risk Books, London.
[9] Chen, R.B., Guo, M., Hardle, W.K., & Huang, S.F. (2007). Independent component analysis via copula techniques. SFB 649 Discussion Paper 2008-004, SSRN.
https://ssrn.com/abstract=2894312
[11] Guo, C., Jia, H., & Zhang, N. (2008). Time series clustering based on ICA for stock data analysis. In 2008 4th international conference on wireless communications, networking and mobile computing, IEEE, 1-4.
https://doi.org/10.1109/WiCom.2008.2534
[14] Hyvarinen, A. (1999). Fast and robust xed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10(3), 626-634.
https://doi.org/10.1109/72.761722
[14] Jayabal, V., Badier, J. M., Pizzo, F., Villalon, S.M., Papageorgakis, C., Lopez-Madrona, V., ... & Benar, C.G. (2022). Virtual MEG sensors based on beamformer and independent component analysis can reconstruct epileptic activity
as measured on simultaneous intracerebral recordings. Neuro Image, 264, 1-17.
https://doi.org/10.1016/j.neuroimage.2022.119681
[16] Langlois, D., Chartier, S., & Gosselin, D. (2010). An introduction to independent component analysis: Infomax and FASTICA algorithms. Tutorials in Quantitative Methods for Psychology, 6(1), 31-38.
https://doi.org/10.20982/tqmp.06.1.p031
[17] Lassance, N., DeMiguel, V., & Vrins, F. (2022). Optimal portfolio diversication via independent component analysis. Operations Research, 70(1), 55-72.
https://doi.org/10.1287/opre.2021.2140
[19] Lee, T.W., Girolami, M., & Sejnowski, T.J. (1999). Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation, 11(2), 417-441.
https://doi.org/10.1162/089976699300016719
[20] Lipshutz, D., Pehlevan, C., & Chklovskii, D.B. (2022). Biologically plausible singlelayer networks for nonnegative independent component analysis. Biological Cybernetics, 116(5), 557-568.
https://doi.org/10.1007/s00422-022-00943-8
[21] Lyu, Q., & Fu, X. (2022). On nite-sample identi ability of contrastive learning-based nonlinear independent component analysis. In: Proceedings of the 39th International Conference on Machine Learning, 162, 14582-14600. Baltimore, Maryland, USA, PMLR.
https://proceedings.mlr.press/v162/lyu22a.html
[22] Meng, X., Iraji, A., Fu, Z., Kochunov, P., Belger, A., Ford, J., ... & Calhoun, V.D. (2022). Multimodel order independent component analysis: a data-driven method for evaluating brain functional network connectivity within and between multiple spatial scales. Brain Connectivity, 12(7), 617-628.
https://doi.org/10.1089/brain.2021.0079
[23] Moneta, A., & Pallante, G. (2022). Identi cation of structural var models via independent component analysis: a performance evaluation study. Journal of Economic Dynamics and Control, 144, 1-37.
https://doi.org/10.1016/j.jedc.2022.104530
[25] Nelsen, R.B. (2007). An introduction to copulas, Springer Science & Business Media, New York.
[26] Rahmanishamsi, J., & Dolati, A. (2018). Rank based least-squares independent component analysis. Journal of Statisical Research of Iran, 14(2), 247-266.
https://doi.org/10.29252/jsri.14.2.247
[27] Rahmanishamsi, J., Dolati, A., & Aghabozorgi, M.R. (2018). A copula based ICA algorithm and its application to time series clustering. Journal of Classi cation, 35(2), 230-249.
https://doi.org/10.1007/s00357-018-9258-x
[28] Rdusseeun, L.K.P.J., & Kaufman, P. (1987). Clustering by means of medoids. In: Proceedings of the Statistical Data Analysis Based on the L1 Norm Conference, 31, 405-416. Neuchatel, Switzerland.
[29] Rincourt, S.L., Michiels, S., & Drubay, D. (2022). Complex disease individual molecular characterization using in nite sparse graphical independent component analysis. Cancer Informatics, 21, 1-16.
https://doi.org/10.1177/11769351221105776
[30] Rousseeuw, P.J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65.
https://doi.org/10.1016/0377-0427(87)90125-7
[31] Shahina, K., & Pradeep Kumar, T.S. (2022). Similarity-based clustering and data aggregation with independent component analysis in wireless sensor networks. In: Transactions on Emerging Telecommuications Technologies, 33(7), 1-15.
https://doi.org/10.1002/ett.4462
[32] Shang, L., Zhang, Y., & Sun, Z.L. (2022). Palmprint feature extraction utilizing WTAICA in contourlet domain. In: International Conference on Intelligent Computing, 464-471. Xi'an, China. https://doi.org/10.1007/978-3-031-13870-6 39
[33] Sheikh, M.S., & Regan, A. (2022). A complex network analysis approach for estimation and detection of trac incidents based on independent component analysis. Physica A: Statistical Mechanics and its Applications, 586, 126504.
https://doi.org/10.1016/j.physa.2021.126504
[34] Suzuki, T., & Sugiyama, M. (2011). Least-squares independent component analysis. Neural Computation, 23(1), 284-301. https://doi.org/10.1162/NECO a 00062
[35] Tabanfar, Z., Ghassemi, F., & Moradi, M.H. (2022). Estimating brain periodic sources activities in steady-state visual evoked potential using local fourier independent component analysis. Biomedical Signal Processing and Control, 71, 103162.
https://doi.org/10.1016/j.bspc.2021.103162
[36] Wand, M.P., & Jones, M.C. (1995) Kernel smoothing. Chapman & Hall, Boca Raton.
[37] Zanghaei, A., Abolhassani, M., Ahmadian, A., Ay, M.R., & Saberi, H. (2013). A New nethod to enhance the clustering algorithm. International Journal of Computer and Electrical Engineering, 5(1), 120-122.
https://doi.org/10.7763/IJCEE.2013.V5.677
[39] Zhou, R., Han, J., Li, T., & Guo, Z. (2022). Fast independent component analysis denoising for magnetotelluric data based on a correlation coecient and fast iterative shrinkage threshold algorithm. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-15.
https://doi.org/10.1109/TGRS.2022.3182504