Feebly lifting modules

Document Type : Special Issue: First Joint IIIMT-Algebra Forum Conference 2023

Authors

1 Department of Mathematics and Science Education, Faculty of Education, Karamanoğlu Mehmetbey University, Karaman, Turkey

2 Department of Mathematics, Faculty of Sciences and Arts, Sinop University, Sinop, Turkey

Abstract

In this article feebly lifting modules are defined. A module $W$ is called feebly lifting provided, for each fully idempotent $N\leq W$ there exists a direct summand $D\leq W$ providing $D\leq N$ and $\frac{N}{D}\ll \frac{W}{D}$. The basic properties  and ring characterizations of these modules are investigated.

Keywords

Main Subjects


[1] Ali, M. M. (2008). Idempotent and nilpotent submodules of multiplication modules. Comm. Algebra, 36(12), 4620-4642. https://doi.org/10.1080/00927870802186805
[2] Amouzegar, T. and Moniri Hamzekolaee, A. R. (2020). Lifting modules with respect to images of a fully invariant submodule, Novi Sad J. Math. 50(2), 41-50. https://doi.org/10.30755/NSJOM.09413
[3] Amouzegar, T., Moniri Hamzekolaee, A. R. and Tercan, A. (2023) Fully invariant submodules for constructing to dual Rickart modules and dual Baer modules, Bulletin Matematique, 66(114), 295-306.
[4] Ansari-Toroghy, H. & Farshadifar, F. (2012). Fully idempotent and coidempotent modules. Bulletin of the Iranian Mathematical Society, 38(4), 987-1005.
[5] Barnard, A. (1981). Multiplication modules. J. Algebra, 71(1), 174-178.
[6] Cannon, G.A., Neuerburg, K.M. (2008). Ideals in Dorroh extensions of rings. Missouri Journal of Mathematical Sciences, 20(3), 165-168.
[7] Clark, J., Lomp,C., Vanaja, N. & Wisbauer, R. (2006). Lifting modules, Birkhauser.
[8] El-Bast, Z. A. & Smith, P. F. (1988). Multiplication modules, Comm. Algebra, 16, 775-779. https://doi.org/10.1080/00927878808823601
[9] Jeon, Y. C., Kim, N. K. & Lee, Y. (2010). On fully idempotent rings. Bull. Korean Math. Soc., 47(4), 715-726. 10.4134/BKMS.2010.47.4.715
[10] Kasch, F. (1982). Modules and rings. New York, London Mathematical Society, Academic Press Inc.
[11] Keskin, D. (1998). Finite direct sum of (D1)-modules. Turkish Journal of Mathematics, 22, 85-91. https://journals.tubitak.gov.tr/math/vol22/iss1/9
[12] Keskin Tutuncu, D., Orhan Ertas, N., Tribak, R. & Smith, P. (2011). On fully idempotent modules. Communications in Algebra, 39, 2707-2722. https://doi.org/10.1080/00927872.2010.489916
[13] Keskin, D. (2000). On lifting modules. Comm. Algebra, 28(7), 3427{3440. https://doi.org/10.1080/00927870008827034
[14] Keskin Tutuncu, D. & Orhan Ertas, N. (2003). CCSR-modules and weak lifting modules. East-West Journal of Mathematics, 5(1), 89-96.
[15] Mohammed, S. H. and Muller, B. J. (1990). Continuous and discrete modules. London Math. Soc. LNS 147, Cambridge University Press, Cambridge.
[16] Moniri Hamzekolaee, A. R. and Amouzegar, T. (2023). I-lifting modules and noncosingularity, Annali Dell'Universita' Di Ferrara, 69, 363-374. https://doi.org/10.1007/s11565-022-00432-7
[17] Sharpe, D. W. & Vamos, P. (1972). Injective modules. Cambridge University Press, Cambridge.
[18] Smoktunowicz, A. (2002). A Simple nil ring exists. Comm. Algebra, 30(1), 27-59. https://doi.org/10.1081/AGB-120006478
[19] Tuganbaev, A. (2003). Multiplication modules over non-commutative rings. Sbornik Mathematics, 194(12), 1837-1864. 10.1070/SM2003v194n12ABEH000788
[20] Wisbauer, R. (1991). Foundations of module and ring theory. Gordon and Breach, Reading.
Volume 13, Issue 5 - Serial Number 30
Special Issue: First Joint IIIMT-Algebra Forum Conference 2023
December 2024
Pages 65-73
  • Receive Date: 30 April 2024
  • Revise Date: 07 November 2024
  • Accept Date: 30 December 2024