[1] Zhang, M.-L. and Z.-H. Zhou, A review on multi-label learning algorithms. IEEE transactions on knowledge and data engineering, 2013. 26(8): p. 1819-1837, doi://doi.org/10.1109/TKDE.2013.39.
[2] Read, J., et al., Classi er chains for multi-label classi cation. Machine learning, 2011. 85(3): p. 333-359, doi://doi.org/10.1007/s10994-011-5256-5.
[3] V. Chauhan and A. Tiwari, \Randomized neural networks for multilabel classi cation," Appl. Soft Comput., vol. 115, p. 108184, Jan. 2022, doi://doi.org/10.1016/j.asoc.2021.108184.
[4] M.A. Tahir, J. Kittler, and A. Bouridane, \Multilabel classi cation using heterogeneous ensemble of multi-label classi ers," Pattern Recognit. Lett., vol. 33, no. 5, pp. 513-523, Apr. 2012, doi://doi.org/10.1016/j.patrec.2011.10.019.
[5] Tsitsulin, A., et al., Graph clustering with graph neural networks. arXiv preprint arXiv:2006.16904, 2020, doi://doi.org/10.48550/arXiv.2006.16904.
[6] Kipf, T.N. and M. Welling, Semi-supervised classi cation with graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016, doi://doi.org/10.48550/arXiv.1609.02907.
[7] You, J., Z. Ying, and J. Leskovec, Design space for graph neural networks. Advances in Neural Information Processing Systems, 2020. 33, doi://doi.org/10.48550/arXiv.2011.08843.
[8] Gibaja, E. and S. Ventura, A tutorial on multilabel learning. ACM Computing Surveys (CSUR), 2015. 47(3): p. 1-38, doi://doi.org/10.1145/2716262.
[9] Wu, Z., et al., A comprehensive survey on graph neural networks. IEEE transactions on neural networks and learning systems, 2020. 32(1): p. 4-24, doi://doi.org/10.1109/TNNLS.2020.2978386.
[10] Kumar, V., et al., Multi-label classi cation using hierarchical embedding. Expert Systems with Applications, 2018. 91: p. 263-269, doi://doi.org/10.1016/j.eswa.2017.09.020.
[11] Vembu, S. and T. Gartner, Label ranking algorithms: A survey, in Preference learning. 2010, Springer. p. 45-64, doi://doi.org/10.1007/978-3-642-14125-6-3.
[12] Liu, S., et al., Query2Label: A Simple Transformer Way to Multi-Label Classi cation. arXiv preprint arXiv:2107.10834, 2021, doi://doi.org/10.48550/arXiv.2107.10834.
[13] Hamilton, W.L., R. Ying, and J. Leskovec, Representation learning on graphs: Methods and applications. arXiv preprint arXiv:1709.05584, 2017, doi://doi.org/10.48550/arXiv.1709.05584.
[14] Mikolov, T., et al. Distributed representations of words and phrases and their compositionality. in Advances in neural information processing systems. 2013, doi://doi.org/10.48550/arXiv.1310.4546.
[15] Perozzi, B., R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social representations. in Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. 2014, doi://doi.org/10.1145/2623330.2623732.
[16] Huang, X., J. Li, and X. Hu. Label informed attributed network embedding. in Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. 2017, doi://doi.org/10.1145/3018661.3018667.
[17] Shi, M., Y. Tang, and X. Zhu, MLNE: Multi-label network embedding. IEEE transactions on neural networks and learning systems, 2019. 31(9): p. 3682-3695, doi://doi.org/10.1109/tnnls.2019.2945869.
[18] Guo, Z., et al., A two-level topic model towards knowledge discovery from citation networks. IEEE Transactions on Knowledge and Data Engineering, 2013. 26(4): p. 780-794, doi://doi.org/10.1109/TKDE.2013.56.
[19] Zhang, L., et al., A modi ed stochastic neighbor embedding for multi-feature dimension reduction of remote sensing images. ISPRS journal of photogrammetry and remote sensing, 2013. 83: p. 30-39, doi://doi.org/10.5194/isprsannals-I-3-395-2012.
[20] Szymanski, P., T. Kajdanowicz, and N. Chawla, LNEMLC: Label network embeddings for multi-label classi cation. arXiv preprint arXiv:1812.02956, 2018, doi://doi.org/10.48550/arXiv.1812.02956.
[21] Sun, X., et al., Label embedding network: Learning label representation for soft training of deep networks. arXiv preprint arXiv:1710.10393, 2017, doi://doi.org/10.48550/arXiv.1710.10393.
[22] Cai, H., V.W. Zheng, and K.C.-C. Chang, A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE Transactions on Knowledge and Data Engineering, 2018. 30(9): p. 1616-1637, doi://doi.org/10.48550/arXiv.1709.07604.
[23] R. Rastogi and S. Mortaza, \Multi-label classi cation with Missing Labels using Label Correlation and Robust Structural Learning," Knowl.-Based Syst., vol. 229, p. 107336, Oct. 2021, doi://doi.org/10.1016/j.knosys.2021.107336.
[24] I. Ullah, M. Manzo, M. Shah, and M. G. Madden, \Graph convolutional networks: analysis, improvements and results," Appl. Intell., vol. 52, no. 8, pp. 9033-9044, Jun. 2022, doi://doi.org/10.1007/s10489-021-02973-4.
[25] Meihao Chen, Zhuoru Lin, Kyunghyun Cho. Graph Convolutional Networks for Classi cation with a Structured Label Space. arXiv preprint arXiv: 1710.04908, 2017, doi://doi.org/10.48550/arXiv.1710.04908.
[26] Z. Li, Y. Liu, Z. Zhang, S. Pan, J. Gao, and J. Bu, \Semi-supervised classication with graph convolutional networks,". arXiv preprint arXiv:1609.02907, 2016, doi://doi.org/10.48550/arXiv.1609.02907.
[27] Y. Wu, Y. Song, H. Huang, F. Ye, X. Xie, and H. Jin, \Enhancing Graph Neural Networks via auxiliary training for semi-supervised node classi cation," Knowl.-Based Syst., vol. 220, p. 106884, May 2021, doi://doi.org/10.1016/j.knosys.2021.106884.
[28] Thomas N Kipf and Max Welling. Semi-supervised classi cation with graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016, doi://doi.org/10.48550/arXiv.1609.02907.
[29] Shi, M., et al., Multi-Label Graph Convolutional Network Representation Learning. IEEE Transactions on Big Data, 2020, doi://doi.org/10.1109/TBDATA.2020.3019478.
[30] Y. Du, W. Guo, J. Liu, and C. Yao, \Classi cation by multi-semantic meta path and active weight learning in heterogeneous information networks," Expert Syst. Appl., vol. 123, pp. 227-236, Jun. 2019, doi://doi.org/10.1016/j.eswa.2019.01.044.
[31] Y. Xiao, P. Quan, M. Lei, and L. Niu, \Latent neighborhood-based heterogeneous graph representation," Neural Netw., vol. 154, pp. 413-424, Oct. 2022, doi://doi.org/10.1016/j.neunet.2022.07.028.
[32] L. Zong, X. Zhang, H. Yu, Q. Zhao, and F. Ding, \Local linear neighbor reconstruction for multi-view data," Pattern Recognit. Lett., vol. 84, pp. 56-62, Dec. 2016, doi://doi.org/10.1016/j.patrec.2016.08.002.
[33] N. Tong, Y. Tang, B. Chen, and L. Xiong, \Representation learning using Attention Network and CNN for Heterogeneous networks," Expert Syst. Appl., vol. 185, p. 115628, Dec. 2021, doi://doi.org/10.1016/j.eswa.2021.115628.
[34] T. Zhao, N. T. Dong, A. Hanjalic, and M. Khosla, \Multi-label Node Classi cation On Graph-Structured Data," 2023, doi: 10.48550/ARXIV.2304.10398.
[35] Z. Qin, H. Chen, Y. Mi, C. Luo, S.-J. Horng, and T. Li, \Multi-label Feature selection with adaptive graph learning and label information enhancement,"Knowledge-Based Systems, vol. 285, p. 111363, Feb. 2024, doi: 10.1016/j.knosys.2023.111363.