[1] Andersen, TG, & Bollerslev, T. (1997). Heterogeneous information arrivals and return volatility dynamics: Uncovering the long-run in high frequency returns. The Journal of Finance, 52(3), 975{1005.
https://doi.org/10.1111/j.1540-6261.1997.tb02722.x
[3] Chen, C., Wang, Z., & Yang, Y., (2019). A new operator splitting method for American options under fractional Black-Scholes models. Computers and Mathematics with Applications, 77(8), 2130{2144.
https://doi.org/10.1016/j.camwa.2018.12.007
[4] Chen, Q., Zhang, Q., & Liu, C. (2019). The pricing and numerical analysis of Lookback options for mixed fractional Brownian motion. Chaos, Solitons and Fractals, 128, 123{128.
https://doi.org/10.1016/j.chaos.2019.07.038
[6] Chung, SL, Huang, YT, Shih, PT, & Wang, JY (2019). Semistatic hedging and pricing American oating strike Lookback options. Journal of Futures Markets, 39(4), 418{434.
https://doi.org/10.1002/fut.21986
[11] Fallah, S., & Mehrdoust, F. (2019). On the existence and uniqueness of the solution to the double Heston model equation and valuing Lookback option. Journal of Computational and Applied Mathematics, 350, 412{422.
https://doi.org/10.1016/j.cam.2018.10.045
[12] Farhadi, A., Salehi, M., & Erjaee, GH (2018). A new version of Black-Scholes equation presented by time-fractional derivative. Iranian Journal of Science and Technology, Transactions A: Science, 42(4), 2159{2166.
https://doi.org/10.1007/s40995-017-0244-7
[13] Goldman, MB, Sosin, HB, & Gatto, MA (1979). Path dependent options: Buy at the low, sell at the high. The Journal of Finance, 34(5), 1111{1127.
https://doi.org/10.2307/2327238
[14] Hashemi, SAS, Saeedi, H., & Bastani, AF (2024). A hybrid Chelyshkov wavelet- nite di erences method for time-fractional black-Scholes equation. Journal of Mahani Mathematical Research, 13(2), 423{452.
https://doi.org/10.22103/jmmr.2024.22371.1526
[15] Hu, YZ, & ?ksendal, B. (2003). Fractional white noise calculus and applications to nance. In nite Dimensional Analysis,
Quantum Probability and Related Topics, 6(1), 1{32.
https://doi.org/10.1142/S0219025703001110
[16] Jumarie, G. (2008). Stock exchange fractional dynamics de ned as fractional exponential growth driven by Gaussian white noise. Application to fractional Black-Scholes equations. Insurance: Mathematics and Economics, 42(1), 271{287.
https://doi.org/10.1016/j.insmatheco.2007.03.001
[17] Kim, KI, Park, HS, & Qian, XS (2011). A mathematical modeling for the Lookback option with jump-di usion using binomial tree method. Journal of Computational and Applied Mathematics, 235(17), 5140{5154.
https://doi.org/10.1016/j.cam.2011.05.002
[20] Muller, UA, Dacorogna, MM, & Pictet, OV (1998). Heavy tails in highfrequency nancial data. A Practical Guide to Heavy Tails: Statistical Techniques and Applications, 55{78.
https://dx.doi.org/10.2139/ssrn.939
[21] Park, SH, & Kim, JH (2013). A semi-analytic pricing formula for Lookback options under a general stochastic volatility model. Statistics and Probability Letters, 83(11), 2537{2543.
https://doi.org/10.1016/j.spl.2013.08.002
[22] Podlubny, I. (1999). Fractional Di erential Equations. Academic Press.
[23] Rezaei, D., & Izadi, M. (2023). An analytical solution to time-space fractional Black-Scholes option pricing model. University Politehnica of Bucharest Scienti c Bulletin-Series A-Applied Mathematics and Physics, 85(1), 129{40.
[24] Rezaei, M., & Yazdanian, AR (2019). Numerical solution of the time-fractional Black-Scholes equation for European double barrier option with time-dependent parameters under the CEV model. Financial Engineering and Portfolio Management, 10(39), 339{369.
https://dorl.net/dor/20.1001.1.22519165.1398.10.39.16.4 [In Persian]
[25] Rezaei, M., Yazdanian, AR, Ashra , A., & Mahmoudi, SM (2021). Numerical pricing based on fractional Black-Scholes equation with timedependent parameters under the CEV model: Double barrier options. Computers and Mathematics with Applications, 90, 104{111.
https://doi.org/10.1016/j.camwa.2021.02.021
[26] Rezaei, M., Yazdanian, AR, Ashra , A., & Mahmoudi, SM (2022). Numerically pricing nonlinear time-fractional Black-Scholes equation with timedependent parameters under transaction costs. Computational Economics, 60(1), 243{280.
https://doi.org/10.1007/s10614-021-10148-z
[27] Rezaei, M., Yazdanian, AR, Mahmoudi, SM, & Ashra , A. (2021). A compact di erence scheme for time-fractional Black-Scholes equation with time-dependent parameters under the CEV model: American options. Computational Methods for Di erential Equations, 9(2), 523{552.
https://doi.org/10.22034/cmde.2020.36000.1623
[28] Shreve, S. (2004). Stochastic calculus for nance II, Continuous-Time Models. Springer Finance.
[29] Wang, XT, Wu, M., Zhou, ZM, & Jing, WS (2012). Pricing European option with transaction costs under the fractional long memory stochastic volatility model. Physica A, 391(4), 1469{1480.
https://doi.org/10.1016/j.physa.2011.11.014
[31] Wyss, W. (2000). The fractional Black-Scholes equations. Fractional Calculus and Applied Analysis, 3(1), 51{61.