[1] Ahamad, M., & Ahmad, N. (2021). Machine Learning Approaches to Digital Learning Performance Analysis. International Journal of Computing and Digital Systems, 10(1), 963{971.
https://doi.org/10.12785/IJCDS/100187
[2] Beiranvand, F., Mehrdad, V., & Dowlatshahi, M. B. (2022). Unsupervised feature selection for image classi cation: A bipartite matching-based principal component analysis approach. Knowledge-Based Systems, 109085.
https://doi.org/10.1016/j.knosys.2022.109085
[4] Derrac, J., Garca, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3{18.
https://doi.org/10.1016/j.swevo.2011.02.002
[5] Fankhauser, S., Riesen, K., Bunke, H., & Dickinson, P. (2012). Suboptimal graph isomorphism using bipartite matching. International Journal of Pattern Recognition and Arti cial Intelligence, 26(6), 1{26.
https://doi.org/10.1142/S0218001412500139
[6] Guo, J., & Zhu, W. (2018). Dependence guided unsupervised feature selection. 32nd AAAI Conference on Arti cial Intelligence, 2232{2239.
[8] Han, K., Wang, Y., Zhang, C., Li, C., & Xu, C. (2018). Autoencoder inspired unsupervised feature selection. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2941{2945.
https://doi.org/10.1109/ICASSP.2018.8462261
[11] Hashemi, A., Bagher, M., & Nezamabadi-pour, H. (2021b). An ecient Paretobased feature selection algorithm for multi-label classi cation. Information Sciences, 581, 428{447.
https://doi.org/10.1016/j.ins.2021.09.052
[12] Hashemi, A., Dowlatshahi, M. B., & Nezamabadi-Pour, H. (2021). A bipartite matching-based feature selection for multi-label learning. International Journal of Machine Learning and Cybernetics, 12(2), 459{475.
https://doi.org/10.1007/s13042-020-01180-w
[13] Hashemi, A., Dowlatshahi, M. B., & Nezamabadi-pour, H. (2021). Ensemble of feature selection algorithms: A multi-criteria decision-making approach. International Journal of Machine Learning and Cybernetics.
https://doi.org/10.1007/s13042-021-01347-z
[18] Jiang, L., Cai, Z., Wang, D., & Jiang, S. (2007). Survey of improving K-nearest-neighbor for classi cation. Proceedings - Fourth International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2007, 1, 679{683.
https://doi.org/10.1109/FSKD.2007.552
[20] Jonker, R., & Volgenant, T. (1988). A shortest augmenting path algorithm for dense and sparse linear assignment problems. In DGOR/NSOR: Papers of the 16th Annual Meeting of DGOR in Cooperation with NSOR/Vortrage der 16. Jahrestagung der DGOR zusammen mit der NSOR 1988 (pp. 622-622). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-73778-7-164
[21] Karami, S., Saberi-Movahed, F., Tiwari, P., & Marttinen, P. (2023). Unsupervised feature selection based on variance{covariance subspace distance. Neural Networks, 166, 188{203.
https://doi.org/10.1016/j.neunet.2023.06.018
[22] Khalid, S., Khalil, T., & Nasreen, S. (2014). A survey of feature selection and feature extraction techniques in machine learning. In Proceedings of 2014 Science and Information Conference (SAI 2014) (pp. 372{378).
https://doi.org/10.1109/SAI.2014.6918213
[23] Kong, H., Wang, L., Teoh, E. K., Li, X., Wang, J. G., & Venkateswarlu, R. (2005). Generalized 2D principal component analysis for face image representation and recognition. Neural Networks, 18(5{6), 585{594.
https://doi.org/10.1016/j.neunet.2005.06.041
[24] Li, J., Chen, J., Qi, F., Dan, T., Weng, W., Zhang, B., Yuan, H., Cai, H., & Zhong, C. (2022). Two-dimensional unsupervised feature selection via sparse feature lter. IEEE Transactions on Cybernetics, 1{13.
https://doi.org/10.1109/TCYB.2022.3162908
[25] Li, J., Liang, X., & Li, P. (2020). Two-dimensional semi-supervised feature selection. Proceedings of the Conference, 280{287.
[26] Li, X., Zhang, H., Zhang, R., Liu, Y., & Nie, F. (2019). Generalized uncorrelated regression with adaptive graph for unsupervised feature selection. IEEE Transactions on Neural Networks and Learning Systems, 30(5), 1587{1595.
https://doi.org/10.1109/TNNLS.2018.2868847
[28] Hashemi, A., Dowlatshahi, M. B., & Nezamabadi-Pour, H. (2021). A bipartite matching-based feature selection for multi-label learning. International Journal of Machine Learning and Cybernetics, 12(2), 459{475.
https://doi.org/10.1007/s13042-020-01180-w
[29] Yang, J., Zhang, D., Frangi, A. F., & Yang, J. Y. (2004). Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(1), 131{137.
https://doi.org/10.1109/TPAMI.2004.161097
[31] Nixon, M. (2007). Feature extraction & image processing (2nd ed.).
[32] Paniri, M., Dowlatshahi, M. B., & Nezamabadi-pour, H. (2021). Ant-TD: Ant colony optimization plus temporal di erence reinforcement learning for multi-label feature selection. Swarm and Evolutionary Computation, 64, 100892.
https://doi.org/10.1016/j.swevo.2021.100892
[33] Rahimi, Z., Taghipour, K., Khadivi, S., & Afhami, N. (2012). Document and sentence alignment in comparable corpora using bipartite graph matching. 2012 6th International Symposium on Telecommunications, IST 2012, 817{821.
https://doi.org/10.1109/ISTEL.2012.6483098
[34] Sanguansat, P. (Ed.). (2012). Principal component analysis. BoD{Books on Demand.
[35] Schrijver, A. (2012). A course in combinatorial optimization.
[36] Tabakhi, S., Moradi, P., & Akhlaghian, F. (2014). An unsupervised feature selection algorithm based on ant colony optimization. Engineering Applications of Arti cial Intelligence, 32, 112{123.
https://doi.org/10.1016/j.engappai.2014.03.007
[37] Tan, H., Zhang, X., Guan, N., Tao, D., & Huang, X. (2015). Two-Dimensional Euler PCA, 548{559.
[38] Tharwat, A. (2018). Classi cation assessment methods. Applied Computing and Informatics, 17(1), 168{192.
https://doi.org/10.1016/j.aci.2018.08.003
[39] Vasudev, C. (2006). Graph theory with applications. New Age International.
[40] Wahid, A., Khan, D. M., Hussain, I., Khan, S. A., & Khan, Z. (2022). Unsupervised feature selection with robust data reconstruction (UFSRDR) and outlier detection. Expert Systems with Applications, 201, 117008.
https://doi.org/10.1016/j.eswa.2022.117008
[41] Wang, C., Wang, J., Gu, Z., Wei, J. M., & Liu, J. (2024). Unsupervised feature selection by learning exponential weights. Pattern Recognition, 148, 110183.
https://doi.org/10.1016/j.patcog.2023.110183
[44] Wang, Q., & Gao, Q. (2016). Robust 2DPCA and its application. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 1152{1158.
https://doi.org/10.1109/CVPRW.2016.147
[46] Xiang, L., Chen, H., Yin, T., Horng, S. J., & Li, T. (2024). Unsupervised feature selection based on bipartite graph and low-redundant regularization. Knowledge-Based Systems, 302, 112379.
https://doi.org/10.1016/j.knosys.2024.112379
[47] Xie, J., Wang, M., Xu, S., Huang, Z., & Grant, P. W. (2021). The unsupervised feature selection algorithms based on standard deviation and cosine similarity for genomic data analysis. Frontiers in Genetics, 12, 684100.
https://doi.org/10.3389/fgene.2021.684100
[48] Yang, J., & Liu, C. (2007). Horizontal and vertical 2DPCA-based discriminant analysis for face veri cation on a large-scale database. IEEE Transactions on Informa-tion Forensics and Security, 2(4), 781{792.
https://doi.org/10.1109/TIFS.2007.910239
[49] Yang, J., Zhang, D., Frangi, A. F., & Yang, J. Y. (2004). Two-dimensional PCA: A new approach to appearance-based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(1), 131{137.
https://doi.org/10.1109/TPAMI.2004.1261097
[50] Yu, L., & Liu, H. (2004). Ecient feature selection via analysis of relevance and redundancy. The Journal of Machine Learning Research, 5, 1205{1224.
[51] Yuan, H., Li, J., Lai, L. L., & Tang, Y. Y. (2019). Joint sparse matrix regression and nonnegative spectral analysis for two-dimensional unsupervised feature selection. Pattern Recognition, 89, 119{133.
https://doi.org/10.1016/j.patcog.2019.01.014
[52] Yuan, H., Li, J., Lai, L. L., & Tang, Y. Y. (2020). Low-rank matrix regression for image feature extraction and feature selection. Information Sciences, 522, 214{226.
https://doi.org/10.1016/j.ins.2020.02.070
[53] Zhang, F., Yang, J., Qian, J., & Xu, Y. (2015). Nuclear norm-based 2-DPCA for extracting features from images. IEEE Transactions on Neural Networks and Learning Systems, 26(10), 2247{2260.
[54] Zhou, X., & Wang, J. (2015). Feature selection for image classi cation based on a new ranking criterion. Journal of Computer and Communications, 3(3), 74{79.
https://doi.org/10.4236/jcc.2015.33013
[55] Zhu, P., Zuo, W., Zhang, L., Hu, Q., & Shiu, S. C. K. (2015). Unsupervised feature selection by regularized self-representation. Pattern Recognition, 48(2), 438{446.
https://doi.org/10.1016/j.patcog.2014.08.006