[1] Altnkaya, S., Yalcn, The (p; q)-Chebyshev polynomial bounds of a general bi-univalent function class. Bol. Soc. Mat. Mex. (3) 26 (2020), no. 2, 341{348.
[2] Brandi, Ricci, P. E., Some properties of the pseudo-Chebyshev polynomials of half-integer degree Tbilisi Math. J. 12 (2019), no. 4, 111-121
[3] C akmak, M. Uslu, K. A. generalization of Chebyshev polynomials with well-known kinds and transition relations. Acta Univ. Apulensis Math. Inform. No. 57 (2019), 19-30.
[4] Kumar, L. S., Mishra, S., Awasthi, S. K., Error bounds of a function related to generalized Lipschitz class via the pseudo-Chebyshev wavelet and its applications in the approximation of functions. Carpathian Math. Publ. 14 (2022), no. 1, 29-48.
[5] Nigam, H. K. Mohapatra, R. N. Murari, K. Wavelet approximation of a function using Chebyshev wavelets. Thai J. Math. (2020), 197-208.
[6] Jesmani, S. M., Mazaheri, H. and Shojaeian, S.Wavelet approximation with Chebyshev. Iranian Journal of Numerical Analysis and Optimization. 1 (2024), no. 28, 315-329.
[7] Mason, J. C. Handscomb, D. C. Chebyshev polynomials. Chapman and Hall/CRC, Boca Raton, FL, 2003.