The fuzzy D'Alembert solutions of the fuzzy wave equation under generalized differentiability

Document Type : Research Paper

Authors

1 Department of Mathematics, Kerman Branch, Islamic Azad University, Kerman, Iran

2 Department of Mathematics, Islamic Azad University, Tehran, Iran

Abstract

In this paper, a one-dimensional homogeneous fuzzy wave equation is solved with an analytical procedure using the fuzzy D’Alembert method by considering the generalized differentiability. Then, some definitions related to fuzzy numbers, theorems, and used lemmas are given. Additionally, the physical interpretation and dependency domain of fuzzy wave solutions are investigated by providing examples, where the fuzzy wave solutions are in the form of fuzzy standing, traveling, and recursive waves.

Keywords


[1] A. Mohebbi, and M. Dehghan. High order compact solution of the one-space-dimensional linear hyper-bolic equation. Numerical Methods for Partial Di erential Equations: An International Journal 24, no. 5 (2008): 1222-1235.
[2] A. Je rey, Applied partial di erential equations: an introduction. Academic Press, (2003).
[3] A. Je rey, Advanced engineering mathematics. Elsevier, (2001).
[4] B. Bede, Mathematics of fuzzy sets and fuzzy logic, Springer, London, (2013).
[5] B. Bede, S. G. Gal, Generalizations of the di erentiability of fuzzy-number-valued functions with applications to fuzzy di erential equations, Fuzzy Sets Syst. 151 (3) (2005) 581-599.
[6] B. Bede, L. Stefanini, Generalized di erentiability of fuzzy-valued functions, Fuzzy Sets Syst. 230 (2013) 119-141.
[7] B. Bede, L. Stefanini, Generalized di erentiability of fuzzy-valued functions, Fuzzy Sets Syst (2012), http://dx.doi.org/10.1016/j.fss 2012.10.003.
[8] D. Dubois, and P. Henri. "Towards fuzzy di erential calculus part 3: Di erentiation." Fuzzy sets and systems 8, no. 3 (1982): 225-233.
[9] D. M. Pozar, A modern course in microwave engineering IEEE Transactions on Education 33, no. 1 (1990): 129-134.
[10] D. J. Evans, H. and Bulut, The numerical solution of the telegraph equation by the alternating group explicit (AGE) method. International journal of computer mathematics, 80 (10) (2003) pp.1289-1297.
[11] G. Bohme, Non-Newtonianuid mechanics. Vol. 31. Elsevier, (2012).
[12] L. A. Zadeh, Fuzzy sets, Inform. Control. 8 (1965) 338-353.
[13] L. Stefanini, A generalization of Hukuhara di erence and division for interval and fuzzy arithmetic, Fuzzy Sets Syst. 161 (2010) 1564-1584.
[14] L. Stefanini, B. Bede, Generalized Hukuhara di erentiability of interval-valued functions and interval di erential equations, Nonlinear Anal., Theory Methods Appl. 71 (34) (2009) 1311-1328.
[15] M. M. Karbasaki, M. R. Balooch shahriari, O. Sedaghatfar, The fuzzy D'Alembert solutions of the fuzzy wave equation under generalized di erentiability, 9th Iranian Joint Congress on Fuzzy and Intelligent Systems (2022, March 2-4), Bam, Kerman, Iran. https://c s2022.bam.ac.ir/
[16] M. Puri, and D. Ralescu, Di erentials of functions, J. Math. Anal. Appl., 91(1983), 552-558.
[17] O. Kaleva, Fuzzy di erential equations, Fuzzy Sets and Systems, 24 (1987), 301-317.
[18] P. M. Jordan, M. R. Meyer, and A. Puri, Causal implications of viscous damping in compressible uid ows. Physical Review E, 62 (6) (2000) p.7918.
[19] Q. Liu, F. Liu, I. Turner, V. Anh, and Y. T. Gu, A RBF meshless approach for modeling a fractal mobile/immobile transport model. Applied Mathematics and Computation, 226 (2014) pp.336-347.
[20] R. Alikhani, F. Bahrami, S. Parvizi, Di erential calculus of fuzzy multi-variable functions and its applications to fuzzy partial di erential equations, Fuzzy Sets Syst. (2019),https://doi.org/10.1016/j.fss.2019.04.011.
[21] R. Goetschel, and W. Voxman, Elementrary fuzzy calculus, fuzzy sets and systems, 18(1986), 31-43.
[22] R. Ghasemi Moghaddam, S. Abbasbandy and M. Rostamy-Malkhalifeh, A Study on Analytical Solutions of the Fuzzy Partial Di erential Equations, Int. J. Industrial Mathematics, 4, (2020).
[23] R. G. Moghaddam, T. Allahviranloo, On the fuzzy Poisson equation, Fuzzy Sets and Systems 347 (2018) 105-128.
[24] R. K. Mohanty, New unconditionally stable di erence schemes for the solution of multidimensional telegraphic equations. International Journal of Computer Mathematics 86,no. 12 (2009): 2061-2071.
[25] S. S. L. Chang, and L. A. Zadeh. "On fuzzy mapping and control." In Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lot  A Zadeh, pp. 180-184. (1996).
[26] T. Allahviranloo et al., On fuzzy solutions for heat equation based on generalized Hukuhara di erentiability, Fuzzy Sets and Systems (2014).
[27] T. Allahviranloo, Z. Gouyandeh, A. Armand, A. Hasanoglu, On fuzzy solutions for heat equation based on generalized Hukuhara di erentiability, Fuzzy Sets and Systems 265 (2015) 1-23.
[28] V. Lakshmikantham, T. Bhaskar, J. Devi, Theory of Set Di erential Equations in Metric Spaces, Cambridge Scienti c Publishers, (2006).
[29] W. Congxin, M. Ming, Embedding problem of fuzzy number space. Part III, Fuzzy Sets Syst. 46 (2) (1992) 281- 286.
[30] Y. Chalco-Cano, R. Rodriguez-Lopez, M.D. Jimenez-Gamero, Characterizations of generalized di erentiable fuzzy function, Fuzzy Sets and Systems(2015).