Recognition of the direct products of Suzuki groups by their complex group algebras

Document Type : Research Paper

Authors

1 Department of Mathematics , Faculty of Science, University of Jiroft, Jiroft, Iran

2 Department of Mathematics, Firoozabad Branch, Islamic Azad University, Firoozabad, Iran

Abstract

Denote by $\widehat{p_n}$, the largest prime among the primitive prime divisors of $ 2^{2n+1}-1 $ and $ 2^{2(4n+2)}-1 $, where $n\in {\Bbb N}$. In this paper, we prove that if $ q=2^{2n+1}\geq8 $ and $\alpha \leq \widehat{p_n}$, then the direct product of $ \alpha $ copies of $ {\rm Sz}(q)$ is uniquely determined by its complex group algebra.

Keywords


[1] M. Baniasad Azad, B. Khosravi, Recognition of M  M by its complex group algebra where M is a simple K3-Group. Mathematics 6(7) (2018) 107.
[2] M. Baniasad Azad, B. Khosravi, Complex group algebras of the direct product of non-isomorphic Suzuki groups. J. Algebra Appl. 19(2)(2020) 2050036 (8 pages).
[3] Y. G. Berkovich, E. M. Zhmud, Characters of  nite groups. Part 1, translations of Mathematical Monographs, American Mathematical Society, Rhode Island, 1998.
[4] C. Bessenrodt, H. Nguyen, J. Olsson, H. Tong-Viet, Complex group algebras of the double covers of the symmetric and alternating groups. Algebra Number Theory 9(3) (2015) 601{628.
[5] G. D. Birkho , H. S. Vandiver, On the integral divisors of an 􀀀bn, Ann. of Math. 5(2) (1904) 173{180.
[6] R. Brauer, Representations of  nite groups, Lectures on Modern Mathematics, Vol. I, (1963) MR0178056 (31:2314).
[7] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of  nite groups, Oxford University Press, Oxford, 1985.
[8] E. C. Dade, Deux groupes  nis distincts ayant la meme algebre de groupe sur tout corps, Math. Z. 119 (1971) 345{348.
[9] P. Hall, A contribution to the theory of groups of prime power order, Proc. London Math. Soc. 36 (1933) 29{95.
[10] B. Huppert, Some simple groups which are determined by the set of their character degrees. I, Ill. J. Math. 44(4) (2000) 828{842.
[11] I. M. Isaacs, Character theory of  nite groups, Academic Press, New York, 1976.
[12] B. Khosravi, B. Khosravi, B. Khosravi, Z. Momen, Recognition of PSL(2; p)PSL(2; p) by its complex group Algebra, J. Algebra Appl. 16(1) (2017) 1750036 (9 pages).
[13] G. Michler, Finite simple group of Lie type has p-blocks with di erent defects if p = 2, J. Algebra 104 (1986) 220{230.
[14] M. Nagl, Charakterisierung der Symmetrischen Gruppen durch ihre komplexe Gruppenalgebra, Stuttgarter Mathematische Berichte 2011. http://www.mathematik.unistuttgart.de/preprints/downloads/2011/2011-007.pdf
[15] M. B. Nathanson, Elementary Methods in Number Theory, Springer edition, NewYork, 2000.
[16] H. N. Nguyen, H. P. Tong-Viet, Characterizing  nite quasi-simple groups by their complex group algebras, Algebr. Represent. Theory 17 (1) (2014) 305{320.
[17] D. J. Robinson, A course in the theory of groups, Springer, New York, 2012.
[18] H. P. Tong-Viet, Simple classical groups of Lie type are determined by their character degrees, J. Algebra 357 (2012) 61{68.
[19] H. P. Tong-Viet, Symmetric groups are determined by their character degrees, J. Algebra 334 (1) (2011) 275{284.
[20] H. Xu, G. Y. Chen, Y. Yan, A new characterization of simple K3-groups by their orders and large degrees of their irreducible characters, Comm. Algebra 42 (2014) 5374{5380.
[21] W. Willems, Blocks of defect zero in  nite simple groups of Lie type, J. Algebra 113 (1988) 511{522.
[22] A. V. Zavarnitsine, Recognition of the simple groups L3(q) by element orders, J. Group Theory 7 (2004) 81{97.
[23] K. Zsigmondy, Zur Theorie der Potenzreste, Montash. Math. 3 (1892) 265{284.