Metallic structures on tangent bundles of Lorentzian para-Sasakian manifolds

Document Type : Research Paper

Authors

1 Mathematics, Arts and Sciences, Erzincan Binali Yıldırım University, Erzincan, Turkey

2 Mathematics, Graduate School of Applied Sciences, Erzincan Binali Yıldırım University, Erzincan, Turkey

Abstract

Let M be a Lorentzian para-Sasakian manifold with a Lorentzian para-Sasakian structure (φ,η,ξ,g). In this paper, we introduce some metallic structures on tangent bundle of the manifold M using vertical, horizontal and complete lifts of the Lorentzian para-Sasakian structure (φ,η,ξ,g) and investigate their parallelity. We also consider fundamental 2-forms and try to find conditions under which these 2-forms are closed.

Keywords


[1] M. Altunbas, L. Bilen, A. Gezer, Remarks about the Kaluza-Klein metric on tangent bundle, Int. J. Geo. Met. Mod. Phys., 16 (3) (2019), 1950040.
[2] A. A. Aqeel, U.C. De, G.C. Ghosh, On Lorentzian para-Sasakian manifolds, Kuwait J. Sci. Eng. 31 (2) (2004), 1-13.
[3] S. Azami, Metallic structures on the tangent bundle of a P-Sasakian manifold, Khayyam Math. J., 7 (2) (2021), 298-309.
[4] S. Azami, General natural metallic structure on tangent bundle, Iranian J. Sci. Tech. Trans. A: Science, 42 (1) (2018), 81-88.
[5] U.C. De, K. Matsumoto, A. A. Shaikh, On Lorentzian para-Sasakian manifolds, Rendiconti del Seminario Mat. de Messina, 3 (1999), 149-156.
[6] A. Gezer, M. Altunbas, On the geometry of the rescaled Riemannian metric on tensor bundles of arbitrary type, Kodai Mathematical Journal, 38 (1), (2015) 37-64.
[7] C.E. Hret,canu, M. Crasmareanu, Metallic structures on Riemannian manifolds, Rev. Un. Mat. Argentina, 54 (2) (2013) 15-27.
[8] A. Kazan, H.B. Karadag, Locally decomposable golden tangent bundles with Cheeger-Gromoll metric, Miskolc Math. Not., 17 (1) (2016), 399-411.
[9] M.N.I. Khan, Novel theorems for the frame bundle endowed with metallic structures on an almost contact metric manifold, Chaos, Solitons and Fractals, 146 (3) (2021),110872.
[10] M.N.I. Khan, U.C. De, Liftings of metallic structures to tangent bundles of order r, AIMS Mathematics, 7 (5) (2022), 7888-7897.
[11] M.N.I. Khan, M.A. Choudhary, S.K. Chaubey, Alternative equations for horizontal lifts of the metallic structures from manifold onto tangent bundle, J. Math., 2022 (2022), Article ID: 5037620.
[11] K. Matsumoto, On Lorentzian para-contact manifolds, Bull. Yamagata Univ. Nat. Sci., 12 (1989), 151-156.
[12] C. Murathan, A. Yildiz, K. Arslan, U. C. De, On a class of Lorentzian para-Sasakian manifolds, Proc. Estonian Acad. Sci. Phys. Math., 55 (4) (2006), 210-219.
[13] M. Ozkan, B. Peltek, A new structure on manifolds: Silver structure, Int. Elec. J. Geo., 9 (2) (2016), 59-69.
[14] M. Ozkan, F. Ylmaz, Metallic structures on di erentiable manifolds, Journal of Science and Arts, 44 (3) (2018), 645-660.
[15] M. Ozkan, E. Taylan, AA C itlak, On lifts of silver structure, Journal of Science and Arts, 17 (2) (2017), 223-234.
[16] E. Peyghan, F. Firuzi, U.C. De, Golden Riemannian structures on the tangent bundle with g-natural metrics, Filomat, 33 (8) (2019), 2543-2554.
[17] A. Taleshian, N. Asghari, On LP-Sasakian manifolds, Bull. Math. Anal. App., 3 (1) (2011), 45-51.
[18] Y. Unluturk, S. Ylmaz, Associated curves of the spacelike curve via the Bishop frame of type-2 in E3 1 ; J. Mahani Math. Res. Cent., 8 (1) (2019), 1-12.
[19] K. Yano, S. Ishihara, Tangent and cotangent bundles, Marcel Dekker Inc., New York, 1979.