[1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets And Systems 20(1)( 1986) 87-96.
[2] R.D. Banker, A. Charnes, W.W. Cooper, Some models for estimating technical and scale ineciencies in data envelopment analysis, Management science, 30 (1984) 1078-1092.
[3] R. E. Bellman, L. A. Zadeh, Decision-making in a fuzzy environment, Management science 17 (1970) 141-164.
[4] F. E. Boran, S. Genc, M. Kurt et al, A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method, Expert Systems with Applications 36 (2009) 11363-11368.
[5] L. Castelli, R. Pesenti, W. Ukovich, A classi cation of DEA models when the internal structure of the decision making units is considered, Annals of Operations Research 173 (2010) 207-235.
[6] A. Chames, W. W. Cooper, E. Rhodes, Measuring the eciency of decision making units, European journal of operational research 2 (1978) 429-444.
[7] Y. Chen, J. Zhu, Measuring information technology's indirect impact on rm performance, Information Technology and Management 5 (2004) 9-22.
[8] Y. Chen, W. D. Cook, N. Li, and J. Zhu, Additive eciency decomposition in two-stage DEA, European Journal of Operational Research 196(3)( 2009)1170-1176.
[9] K. Chiang, T. Shiang, Fuzzy eciency measures in DEA, Fuzzy Sets Syst 113 (2000) 426-428.
[10] W. D. Cook, J. Zhu, G. Bi, Network DEA: Additive eciency decomposition, European journal of operational research 207 (2010) 1122-1129.
[11] W. W. Cooper, K.S. Park, G. Yu, IDEA and AR-IDEA: Models for dealing with imprecise data in DEA, Management science 45 (1999) 597-607.
[12] B. Daneshvar Rouyendegh, The DEA and intuitionistic fuzzy TOPSIS approach to departments' performances: a pilot study, Journal of Applied Mathematics 2011 (2011).
[13] B. Erdebilli, I. Gunesli, S. Sahin, Dental supplier selection with TOPSIS method by using LP methodology, Muhendislik Bilimleri ve Tasarm Dergisi 9(3)(2021)940-951.
[14] Z. Eslaminasab, A. Hamzehee, Determining appropriate weight for criteria in multi criteria group decision making problems using an Lp model and similarity measure,Iranian Journal of Fuzzy Systems 16(3)(2019) 35-46.
[15] Z. Eslaminasab, A. Hamzehee, A new ranking model for multi attribute group decision making problems with intuitionistic fuzzy data, Journal of New Researches in Mathematics 7(31)(2021) 133-150.
[16] R.Fare, Measuring Farrell eciency for a rm with intermediate inputs, Academia Economic Papers 19 (1991) 329-340.
[17] R. Fare, S. Grosskopf, Intertemporal production frontiers: with Dynamic DEA, Kluwer Academic Publishers, Boston, MA, USA, (1996).
[18] R. Fare, S. Grosskopf, Network DEA, Socio-Economic Planning Sciences 34 (2000) 35-49.
[19] R. Fare, S. Grosskopf, G. Whittaker, Network DEA, Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis, Springer, Berlin, Germany (2007).
[20] M. J. Farrell, The measurement of productive eciency, Journal of the Royal Statistical Society: Series A (General) 120 (1957) 253-281.
[21] P. Grzegorzewski, Distances and orderings in a family of intuitionistic fuzzy numbers, In EUSFLAT Conf, (2003) 223-227.
[22] S. H. R. Hajiagha, H. Akrami, E. Kazimieras Zavadskas, Sh. Hashemi, An intuitionistic fuzzy data envelopment analysis for eciency evaluation under ucertainty: case of a nance and credit institution, Ekonomie a Management, 16(1)(2013) 128-137.
[23] N. Javaherian, A. Hamzehee, H. Sayyadi Tooranloo, R. Soleymani-Damaneh, Eciency Evaluation of Two-Stage Data Envelopment Analysis Model Based on Triangular Intuitionistic Fuzzy numbers and slack variables, Journal of New Researches in Mathematics 7(34) (2020) 33-50.
[24] N. Javaherian, A. Hamzehee, H. Sayyadi Tooranloo,Designing an Intuitionistic Fuzzy Network Data Envelopment Analysis Model for Eciency Evaluation of Decision Making Units with Two-Stage Structures, advances in fuzzy system, 2021(2021) 1-15.
[25] C. Kao, Eciency decomposition in network data envelopment analysis: A relational model, European journal of operational research 192 (2009) 949-962 .
[26] C. Kao, Eciency decomposition for parallel production system, Journal of the operational Research Society 63 (2012) 64-71.
[27] C. Kao Eciency decomposition for general multi-stage systems in data envelopment analysis, European Journal of Operational Research 232 (2014) 117-124.
[28] C. Kao, S. N. Hwang, Eciency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan, European journal of operational research 185 (2008) 418-429.
[29] C. Kao, S. T. Liu, Fuzzy eciency measures in data envelopment analysis, Fuzzy sets and systems 113 (2000) 427-437.
[30] S. Lertworasirikul, S. C. Fang, H. L. Nuttle, Fuzzy BCC model for data envelopment analysis, Fuzzy Optimization and Decision Making 2 (2003) 337-358.
[31] D. F. Li, G. H. Chen, Z. G. .Huang, Linear programming method for multiattribute group decision making using IF sets, Information Sciences 180 (2010) 1591-1609 .
[32] A. Luqman, M. Akram, J.C.R. Alcantud, Digraph and matrix approach for risk evaluations under Pythagorean fuzzy information, Expert Systems with Applications 170 (2021): 114518.
[33] G. Mahapatra, T. Roy, Reliability evaluation using triangular intuitionistic fuzzy numbers arithmetic operations, World Academy of Science, Engineering and Technology 50 (2009) 574-581.
[34] R. Parvathi, C. Malathi,Intuitionistic fuzzy linear optimization, Notes Intuit Fuzzy Sets 18(1)(2012) 48-56.
[35] R. Parvathi, C. Malathi, M. Akram, K. T. Atanassov, Intuitionistic fuzzy linear regression analysis, Fuzzy Optimization and Decision Making 12(2) (2013) 215-229.
[36] J. Puri, S.P. Yadav, Intuitionistic fuzzy data envelopment analysis: An application to the banking sector in India, Expert Systems with Applications 42 (2015) 4982-4998.
[37] M. Rostamy-Malkhalifeh, E. Mollaeian, Evaluating performance supply chain by a new non-radial network DEA model with fuzzy data, Science 9 (2012).
[38] J. K. Sengupta, A fuzzy systems approach in data envelopment analysis, Computers and Mathematics with Applications 24 (1992) 259-266.
[39] T. R. Sexton, H. F. Lewis, Two-stage DEA: An application to major league baseball, Journal of Productivity Analysis 19 (2003) 227-249.
[40] K. Tone, M.Tsutsui, Network DEA: A slacks-based measure approach, European journal of operational research 197 (2009) 243-252.
[41] K. Triantis, O. Girod, A mathematical programming approach for measuring technicaleciency in a fuzzy environment, Journal of Productivity Analysis 101 (998) 85-102.
[42] C.H. Wang, R. Gopal and S. Zionts, Use of data envelopment analysis in assessing information technology impact on rm performance, Annals of Operations Research 73 (1997) 191-213.
[43] R. R. Yager, Pythagorean fuzzy subsets, In: Procedings Joint IFSA World Congress and NAFIPS Annual Meeting, Edmonton Canada (2013) 57-61.
[44] L.A. Zadeh, Fuzzy sets, Information and control 8 (1965) 338-353.