The small intersection graph of filters of a bounded distributive lattice

Document Type : Research Paper

Authors

Department of Mathematics, University of Guilan, Rasht, Iran

Abstract

Let L be a lattice with 1 and 0. The small intersection graph of filters of L, denoted by Γ(L), is defined to be a graph whose vertices are in one to one correspondence with all non-trivial filters of L and two distinct vertices are adjacent if and only if the intersection of corresponding filters of L is a small filter of L. In this paper, the basic  properties and possible structures of the graph Γ(L) are investigated. Moreover, the complemented property, the domination number and the planar property of Γ(L) are considered.

Keywords


[1] S. Akbari, H. A. Tavallaee, S. Khalashi Ghezelahmad, Intersection graph of submodules of a module, J. Algebra Appl. 11 (2012), 1250019.
[2] H. Ansari-Toroghy, F. Farshadifar, F. Mahboobi-Abkenar, The small intersection graph relative to multiplication modules. J. Algebra Relat. Topics , 4(1) (2016), 21-32.
[3] I. Beck, Coloring of commutative rings, J. Algebra. 116 (1988), 208-226.
[4] J. Bosak, The graphs of semigroups, in Theory of Graphs and its Applications, Academic Press, New York, 1964, pp. 119-125.
[5] A. Bondy and U. S. R. Murty, Graph Theory, Graduate texts in Mathematics, 244,Springer, New York, 2008.
[6] G. Calugareanu, Lattice Concepts of Module Theory, Kluwer Academic Publishers, 2000.
[7] I. Chakrabarty, S. Ghosh, T. K. Mukherjee, M. K. Sen, Intersection graphs of ideals of rings, Discrete Math. 309 (2009), 5381-5392.
[8] B. Csakany, G. Pollak, The graph of subgroups of a  nite group, Czechoslovak Math. J. 19(1969), 241-247.
[9] S. Ebrahimi Atani, G-Supplemented property in the lattices, Mathematica Bohemica. DOI: 10.21136/MB.2022.0124-20.
[10] S. Ebrahimi Atani and M. Chenari, Supplemented property in the lattices, Serdica Math. J. 46 (1) (2020), 73-88.
[11] S. Ebrahimi Atani, S. Dolati Pish Hesari and M. Khoramdel, A graph associated to proper non-small ideals of a commutative ring, Comment. Math. Univ. Carolin 58 (1) (2017), 1-12.
[12] S. Ebrahimi Atani, S. Dolati Pish Hesari, M. Khoramdel and M. Sedghi Shanbeh Bazari, A simiprime  lter-based identity-summand graph of a lattice, Le Matematiche 73(2) (2018), 297-318.
[13] S. Ebrahimi Atani, M. Khoramdel, S. Dolati Pish Hesari and M. Nikmard Rostam Alipour, Semisimple lattices with respect to  lter theory, to appear in J. Algebra Relat. Topics.
[14] S. Ebrahimi Atani, M. Khoramdel and M. Nikmard Rostam Alipour, An ideal-based graph of a bounded lattice, Asian-Eur. J. Math. 11 (2) 2250152. DOI:10.1142/S1793557122501522.
[15] S. Ebrahimi Atani and M.sedghi Shanbeh Bazari, On 2-absorbing  lters of lattices, Discuss. Math. Gen. Algebra Appl. 36 (2016), 157-168.
[16] S. H. Jafari, N. Jafari Rad, Domination in the intersection graphs of rings and modules, Ital.J. Pure Appl. Math. 28 (2011), 19-22.
[17] L. A. Mahdavi and Y. Talebi, On the small intersection graph of submodules of a module, Algebr. Struct. Appl. 8(1) (2021), 117-130.
[18] Z. S. Pucanovic, Z. Z Petrovic, Toroidality of intersection graphs of ideals of commutativerings, Graphs Combin. 30 (2014), no. 3, 707-716.
[19] Y. Talebi and M. Eslami, The small intersection graph of ideals of a lattice, Ital. J. Pure Appl. Math., 46 (2021), 1020-1028.
[20] E. Yaraneri, Intersection graph of a module, J. Algebra Appl. 12 (2013), no. 5, 1250218,30 pages