Higher Homomorphisms and ‎Their Approximations

Document Type : Research Paper

Author

Department of Mathematics, Payame Noor University, P. O. Box 19395-3697, Tehran, Iran.

Abstract

‎In this paper‎, ‎we introduce a class of higher homomorphisms on an algebra $ \mathcal{A} $ and we characterize the structure of them as a linear combination of some ‎sequences‎ of homomorphisms‎.‎ ‎Also ‎‎we prove that for any approximate higher ring homomorphism on a Banach algebra $ \mathcal{A} $ under some sequences of control funtions‎, there exists a unique higher ring homomorphism near it. Using special sequences of control functions, we show that the approximate higher ring homomorphism is an exact higher ring homomorphism.

Keywords


[1] A. Bahraini, G. Askari and M. Eshaghi Gordji, On approximate orthogonally ring homomorphisms and orthogonally ring derivations in Banach algebras with the new type fixed point, J. Mahani Math. Res. Cent. 10(2) (2021) 115{123.
[2] L. Cadariu, V. Radu, On the stability of the Cauchy functional equation: a  fixed point approach, Grazer Math. Ber. 346 (2004) 43{52 .
[3] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scienti c, 2002.
[4] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62 (1992) 59{64.
[5] J. B. Diaz, B. Margolis, A  xed point theorem of the alternative for the contractions on generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968) 305{309.
[6] E. Elqorachi, M. Th. Rassias, Generalized Hyers-Ulam Stability of Trigonometric Functional Equations, Mathematics, 6, 83 (2018) 1{11.
[7] A. K. Faraj, A. H. Majeed, C. Haetinger, N. Rehman, On Generalized Jordan higher homomorphisms, Palestine Journal of Mathematics, 3 (2014) 406 { 421.
[8] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci., 14 (1991) 431{434.
[9] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941) 222{224.
[10] D. H. Hyers, G. Isac, Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, 1998.
[11] D. H. Hyers, T. Rassias, Approximate homomorphisms, Aeq. Math., 44 (1992) 125{153.
[12] Y. F. Jin, C. Park, M. Th. Rassias, Hom-derivations in C*-ternary algebras, Acta Mathematica Sinica, English Series, 36, 9 (2020) 1025{1038.
[13] S. -M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, 2011.
[14] S. -M. Jung, D. Popa, M. Th. Rassias, On the stability of the linear functional equation in a single variable on complete metric groups, Journal of Global Optimization, 59 (2014) 165{171.
[15] S. -M. Jung, M. Th. Rassias, C. Mortici, On a functional equation of trigonometric type, Applied Mathematics and Computation, 252 (2015) 294{303.
[16] Y. -H. Lee, S. -M. Jung, M. Th. Rassias, On an n-dimensional mixed type additive and quadratic functional equation, Applied Mathematics and Computation, 228 (2014) 13{16.
[17] Y. -H. Lee, S. -M. Jung, M. Th. Rassias, Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation, Journal of Mathematical Inequalities, 12,1 (2018) 43{61.
[18] H. Mazaheri, M. Zarenejhad, Some New Results on Remotest Points in Normed Spaces, J. Mahani Math. Res. Cent. 3(1) (2014) 37{50.
[19] V. Radu, The  xed point alternative and stability of functional equations, Fixed Point Theory, 4 (2003) 91{96.
[20] Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., 251 (2000) 264{284.
[21] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978) 297{300.
[22] Th. M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl., 246 (2000) 352{378.
[23] S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964.