Analytic Univalent fucntions defined by Gegenbauer polynomials

Document Type : Research Paper

Author

Department of Mathematical Sciences, Federal University of Technology, P.M.B.704, Akure, Nigeria

Abstract

The numerical tools that have outshinning many others in the history of Geometric Function Theory (GFT) are the Chebyshev and Gegenbauer polynomials in the present time. Recently, Gegenbauer polynomials have been used to define several subclasses of an analytic functions and their yielded results are in the public domain. In this work, analytic univalent functions defined by Gegenbauer polynomials is considered using close-to-convex approach of starlike function. Some early few coefficient bounds obtained are used to establish the famous Fekete-Szego inequalities.

Keywords


[1] A. Amourah, A. G. Al Amoush, M. Al-Kaseasbeh, Gegenbauer polynomials and biunivalent functions. Palestine Journal of Mathematics, 10 (2), 625-632, (2021).
[2] A. Amourah, B.A. Frasin, T. Abdeljawad, Fekete-Szego Inequality for Analytic and Biunivalent Functions Subordinate to Gegenbauer Polynomials. Journal of Function Spaces, Volume 2021, Article ID 5574673, 7 pages, (2021).
[3] A. Amourah, M. Alomari, F. Yousef, A. Alsoboh, Consolidation of a Certain Discrete Probability Distribution with a Subclass of Bi-Univalent Functions Involving Gegenbauer Polynomials. Mathematical Problems in Engineering, Volume 2022, Article ID 6354994, 6 pages, (2022).
[4] H. Bavinck, G. Hooghiemstra, E. De Waard, An application of Gegenbauer polynomials in queueing theory. Journal of Computational and Applied Mathematics Mathematics, 49, 1-10, (1993).
[5] O.A. Fadipe-Joseph, A.T. Oladipo, U.A. Ezeafulukwe, Modi ed sigmoid function in univalent function theory.  International Journal of Mathematical Sciences and Engineering application, 7, 313-317, (2013).
[6] A.W. Goodman, Univalent Functions. Vols 1-2, (1983).
[7] W. Ma, D. Minda, A uni ed treatment of some special classes of univalent factors. In Proceedings of the conference on Complex Analysis, Tianjin, China, 19-23, June, 1992, Conference on Proceedings Lecture Notes for Analysis. International Press; Cambridge, MA, USA, pp 157-169, (1994).
[8] G. Murugusundaramoorthy, T. Janani, Sigmoid function in the space of univalent  pseudo starlike functions. International Journal of Pure and Applied Mathematics, 101, 33-41, (2015) .
[9] G. Murugusundaramoorthy, S.O. Olatunji, O.A. Fadipe-Joseph, Fekete-Szego problems for analytic functions in the space of logistic sigmoid functions based on quasisubordination. Int. J. Nonlinear Anal. Appl., 9, No. 1, 55-68, (2018).
[10] A.T. Oladipo, Analytic univalent function de ned by generalized discrete probability distribution. Earthline Journal of Mathematical Sciences, vol.5(1), 169-178, (2021).
[11] S.O. Olatunji, Fekete-Szego Inequalities on certain subclasses of analytic functions defined by pseudo-q difference operator associated with s sigmoid function. Boletn de la Sociedad Matematica Mexicana, to appear.
[12] S.O Olatunji, E.J. Dansu, Coecient Estimates for Bazilevic Ma-Minda Functions in the Space of Sigmoid Function. Malaya Journal of Matematik, Mat. 4(3), 505-512, (2016).
[13] S.O. Olatunji, A.T. Oladipo, On a new subfamilies of analytic and univalent functions with negative coecient with respect to other points. Bulletin of Mathematical Analysis and Applications, Vol.3 No. 2, 159-166, (2011).
[14] S.O. Olatunji, A.M. Gbolagade, On certain subclass of analytic functions associated with gegenbauer polynomials. Journal of Fractional Calculus and Applications, 9(2), 127-132, (2018).
[15] R. Singh, On a class of star-like functions. Compos. Math., 19(1), 78-82, (1968).
[16] J. Szynal, An extension of typically real functions. Ann. Univ. Mariae Curie-Sklodowska, Sect A. 48, 193-201 (1994).
[17] A. Vasudevarao, J.Sokol, D.K. Thomas, On a close-to-convex analogue of certain starlike functions. Bulletin Aust. Math. Soc., 102 (2), 268-281 (2020).