[1] A. Amourah, A. G. Al Amoush, M. Al-Kaseasbeh, Gegenbauer polynomials and biunivalent functions. Palestine Journal of Mathematics, 10 (2), 625-632, (2021).
[2] A. Amourah, B.A. Frasin, T. Abdeljawad, Fekete-Szego Inequality for Analytic and Biunivalent Functions Subordinate to Gegenbauer Polynomials. Journal of Function Spaces, Volume 2021, Article ID 5574673, 7 pages, (2021).
[3] A. Amourah, M. Alomari, F. Yousef, A. Alsoboh, Consolidation of a Certain Discrete Probability Distribution with a Subclass of Bi-Univalent Functions Involving Gegenbauer Polynomials. Mathematical Problems in Engineering, Volume 2022, Article ID 6354994, 6 pages, (2022).
[4] H. Bavinck, G. Hooghiemstra, E. De Waard, An application of Gegenbauer polynomials in queueing theory. Journal of Computational and Applied Mathematics Mathematics, 49, 1-10, (1993).
[5] O.A. Fadipe-Joseph, A.T. Oladipo, U.A. Ezeafulukwe, Modi ed sigmoid function in univalent function theory. International Journal of Mathematical Sciences and Engineering application, 7, 313-317, (2013).
[6] A.W. Goodman, Univalent Functions. Vols 1-2, (1983).
[7] W. Ma, D. Minda, A uni ed treatment of some special classes of univalent factors. In Proceedings of the conference on Complex Analysis, Tianjin, China, 19-23, June, 1992, Conference on Proceedings Lecture Notes for Analysis. International Press; Cambridge, MA, USA, pp 157-169, (1994).
[8] G. Murugusundaramoorthy, T. Janani, Sigmoid function in the space of univalent pseudo starlike functions. International Journal of Pure and Applied Mathematics, 101, 33-41, (2015) .
[9] G. Murugusundaramoorthy, S.O. Olatunji, O.A. Fadipe-Joseph, Fekete-Szego problems for analytic functions in the space of logistic sigmoid functions based on quasisubordination. Int. J. Nonlinear Anal. Appl., 9, No. 1, 55-68, (2018).
[10] A.T. Oladipo, Analytic univalent function de ned by generalized discrete probability distribution. Earthline Journal of Mathematical Sciences, vol.5(1), 169-178, (2021).
[11] S.O. Olatunji, Fekete-Szego Inequalities on certain subclasses of analytic functions defined by pseudo-q difference operator associated with s sigmoid function. Boletn de la Sociedad Matematica Mexicana, to appear.
[12] S.O Olatunji, E.J. Dansu, Coecient Estimates for Bazilevic Ma-Minda Functions in the Space of Sigmoid Function. Malaya Journal of Matematik, Mat. 4(3), 505-512, (2016).
[13] S.O. Olatunji, A.T. Oladipo, On a new subfamilies of analytic and univalent functions with negative coecient with respect to other points. Bulletin of Mathematical Analysis and Applications, Vol.3 No. 2, 159-166, (2011).
[14] S.O. Olatunji, A.M. Gbolagade, On certain subclass of analytic functions associated with gegenbauer polynomials. Journal of Fractional Calculus and Applications, 9(2), 127-132, (2018).
[15] R. Singh, On a class of star-like functions. Compos. Math., 19(1), 78-82, (1968).
[16] J. Szynal, An extension of typically real functions. Ann. Univ. Mariae Curie-Sklodowska, Sect A. 48, 193-201 (1994).
[17] A. Vasudevarao, J.Sokol, D.K. Thomas, On a close-to-convex analogue of certain starlike functions. Bulletin Aust. Math. Soc., 102 (2), 268-281 (2020).