On multiplication $fs$-modules and dimension symmetry

Document Type : Research Paper

Authors

1 Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 Department of Science, Shahid Rajaee Teacher Training University, Tehran, Iran

Abstract

In this paper, we first study $fs$-modules, i.e., modules with finitely many small submodules. We show that every $fs$-module with finite hollow dimension is Noetherian. Also, we prove that an $R$-module $M$ with finite Goldie dimension, is an $fs$-module if, and only if, $M = M_1 \oplus M_2$, where $M_1$ is semisimple and $M_2$ is an $fs$-module with $Soc(M_2) \ll M$. Then, we investigate multiplication $fs$-modules over commutative rings and we prove that the lattices of $R$-submodules of $M$ and $S$-submodules of $M$ are coincide, where $S=End_R(M)$. Consequently, $M_R$ and $_SM$ have the same Krull (Noetherian, Goldie and hollow) dimension. Further, we prove that for any self-generator multiplication module $M$, to be an $fs$-module as a right $R$-module and as a left $S$-module are equivalent.

Keywords


[1] T. Albu, P. F. Smith, Dual Krull dimension and duality, Rocky Mountain J. Math., 29 (1999), 1153{1164.
[2] A. R. Alehafttan, N. Shirali, On the small Krull dimension, Comm. Algebra, 46(5) (2018), 2023{2032.
[3] L. Chambless, Dimension and N-critical modules, application to Artinian modules, Comm. Algebra, 8(16) (1980), 1561{1592.
[4] C. W. Choi, P. F. Smith, On endomorphisms of multiplication modules, J. Korean Math. Soc., 31(1) (1994), 89{95.
[5] M. Davoudian, O. A. S. Karamzadeh, N. Shirali, On  -short modules, Math. Scan., 114 (2016), 26{37.
[6] K. R. Goodearl, R. B. War eld, An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, Cambridge, UK, (1989).
[7] J. Hashemi, O. A. S. Karamzadeh, N. Shirali, Rings over which the Krull dimension and the Noetherian dimension of all modules coincide, Comm. Algebra, 37 (2009), 650{662.
[8] S. M. Javdannezhad, N. Shirali, The Krull dimension of certain semiprime modules versus their  -shortness, Mediterr. J. Math., 15 (2018), 116.
[9] S. M. Javdannezhad, N. Shirali, On the class-ication of  -Krull modules, JP. J. Math., 40(1) (2018), 1{12.
[10] S. M. Javdannezhad, N. Shirali, On fully bounded modules and Krull symmetry. East-West J. of Mathematics, 22(2) (2020), 174{181.
[11] S. M. Javdannezhad, N. Shirali, On modules with only  nitely many small submodules, 52nd Annual Iranian Mathematics Conference, Shahid Bahonar University of Kerman, Kerman, Iran, 30 August- 02 September, 2021.
[12] O. A. S. Karamzadeh, N. Shirali, On the countability of Noetherian dimension of modules, Comm. Algebra, 32(10) (2004), 4073{4083.
[13] O. A. S. Karamzadeh, M. Motamedi, S. M. Shahrtash, On rings with a unique proper essential right ideal, Fundamenta Mathematicae, 183 (2004), 229{244.
[14] O. A. S. Karamzadeh, M. Motamedi, On  -DICC modules, Comm. Algebra, 22 (1994), 1933{1944.
[15] B. Lemonnier, Dimension de Krull et codeviation, application au theorem d  Eakin. Comm. Algebra, 6 (1978):1647{1665.
[16] C. Lomp, On dual Goldie dimension, Diplomarbeit (M.Sc. Thesis), HHU Doesseldorf, Germany, (1996).
[17] A. G. Naoum, A note on projective modules and multiplication modules, Beitrage zur Algebra und Geometry, 32 (1991), 27{32.
[18] P. F. Smith, Multiplication modules, Comm. Algebra, 16(4) (1988), 755{779.
[19] P. Vamos, The dual of the notion of  nitely generated, J. London Math. Soc., 43 (1968), 643{646.
[20] B. Sarath, K. Varadarajan, Dual Goldie dimension II, Comm. Algebra, 7 (1979), 1885{1899.
[21] R. Wisbauer, Foundations of module and ring theory, Gordon and Breach, Reading, Philadelphia, (1991).