[1] G. R. Amin and S. Al-Muharrami. A new inverse data envelopment analysis model for mergers with negative data. IMA Journal of Management Mathematics, 00:1–13, 2016.
[2] G. R. Amin, A. Emrouznejad, and S. Gattoufi. Modelling generalized firms’ restructuring using inverse dea. Journal of Productivity Analysis, 48:51–61, 2017.
[3] A. Amirteimoori, B. K. Sahoo, V. Charles, and S. Mehdizadeh. Stochastic Benchmarking. Springer International Publishing, Switzerland, 2021.
[4] L. Dong Joon. Inverse dea with frontier changes for new target setting. European Journal of Operational Research, 254:510–516, 2016.
[5] M. Ehrgott. Multicriteria optimization. Springer Berlin, 2005.
[6] A. Emrouznejad, A. L. Anouze, and E. Thanassoulis. A semi-oriented radial measure for measuring the efficiency of decision making units with negative data, using dea. European Journal of Operational Research, 200(1):297–304, 2010.
[7] A. Emrouznejad and M. Tavana. Performance Measurement with Fuzzy Data Envelopment Analysis. Springer, 2014.
[8] A. Emrouznejad and G. Yang. A survey and analysis of the first 40 years of scholarly literature in dea: 1978-2016. Journal of Socio-Economic Planning Sciences, 61:4–8, 2018.
[9] S. Gattoufi, G. R. Amin, and A. Emrouznejad. A new inverse dea method for merging banks. IMA Journal of Management Mathematics, 25:73–87, 2014.
[10] M. Ghiyasi and N. Zhu. An inverse semi-oriented radial data envelopment analysis measure for dealing with negative data. IMA Journal of Management Mathematics, 31(4):505–516, 2020.
[11] S. Ghobadi. Inputs and outputs estimation in inverse dea. Iranian Journal of Optimization, 9(2):119–129, 2017.
[12] S. Ghobadi. A dynamic dea model for resource allocation. Int. J. of Mathematics in Operational Research, 17(1):50–77, 2020.
[13] S. Ghobadi. Merging decision-making units with interval data. RAIRO-Operations Research, 55:1605–1630, 2021.
[14] S. Ghobadi, Kh. Soleimani, and E. Zanboori. A novel inverse dea model for restructuring dmus with negative data. Int. J. of Operational Research, 46(1):118–132, 2023.
[15] S. Ghobadi, Kh. Soleimani, and E. Zanboori. Simultaneous estimation of input-output levels under improving efficiency level in an assessment window. Soft Computing, (In print):https://doi.org/10.1007/s00500–023–07878–7, 2023.
[16] A. Ghomi, S. Ghobadi, M. H. Behzadi, and M. Rostamy-Malkhalifeh. Inverse data envelopment analysis with stochastic data. RAIRO-Operations Research, 55(5):2739 – 2762, 2021.
[17] A. Hadi-Vencheh and A. A. Foroughi. A generalized dea model for inputs/outputs estimation. Mathematical and Computer Modelling, 43(5-6):447–457, 2006.
[18] A. Hadi-Vencheh, A. A. Foroughi, and M. Soleimani-Damaneh. A dea model for resource allocation. Economic Modelling, 25(5):983–993, 2008.
[19] G. R. Jahanshahloo, F. H. Lotfi, N. Shoja, G. Tohidi, and S. Razavyan. Sensitivity of efficiency classifications in the inverse dea models. Applied Mathematics and Computation, 169(2):905–916, 2005.
[20] C. A. K. Lovell. Measuring the macroeconomic performance of the taiwanese economy. Int. J. Prod. Econ., 39:165–178, 1995.
[21] L. Peide and X. Hongxue. Integrated one-stage model considering undesirable outputs for slacks-based measure of efficiency and super efficiency in data envelopment analysis. Journal of the Operational Research Society, 0(0):1–13, 2022.
[22] L. Peide, Z. Yizhen, and X. Hongxue. A neutral cross-efficiency measurement for general parallel production system. Expert Systems with Applications, 205:117778, 2022.
[23] M. C. A. S. Portela, E. Thanassoulis, and G. G. Simpson. A negative data in dea: a directional distance approach applied to bank branches. Journal of the Operational Research Society, 55(10):1111–1121, 2004.
[24] H. Scheel. Undesirable outputs in efficiency valuations. Eur. J. Oper. Res., 132:400–410, 2001.
[25] L. M. Seiford and J. Zhu. Modeling undesirable factors in efficiency evaluation. European Journal of Operational Research, 142:16–20, 2002.
[26] T. Shahsavan, M. Sanei, G. Tohidi, F. H. Lotfi, and S. Ghobadi. A new method of determining decision-making unit congestion under inter-temporal dependence. Soft Comput, 26:2063–2073, 2022.
[27] M. Soltanifar, M. Ghiyasi, and H. Sharafi. Inverse DEA-R models for merger analysis with negative data. IMA Journal of Management Mathematics, (In print):10.1093/imaman/dpac001, 2022.
[28] M. Soltanifar and H. Sharafi. A modified dea cross efficiency method with negative data and its application in supplier selection. Journal of Combinatorial Optimization, 43:265–296, 2022.
[29] Q. L. Wei, J. Z. Zhang, and X. S. Zhang. An inverse dea model for inputs/outputs estimate. European Journal of Operational Research, 121(1):151–163, 2000.
[30] E. Zeinodin and S. Ghobadi. Merging dmus based on of the idea inverse dea. Iranian Journal of Optimization, 11(2):77–84, 2018.
[31] E. Zenodin and S. Ghobadi. Merging decision-making units under inter-temporal dependence. IMA Journal of Management Mathematics, 31(2):139–16, 2020.
[32] X. Zhang and J. Cui. a project evaluation system in the state economic information system of china: An operation research practice in public sectore. International Transactions in Operational, 6:441–452, 1999.