1] Allison, J.S., Betsch, S., Ebner, B., and Visagie, J. (2022), On testing the adequacy of the inverse Gaussian distribution, Mathematics, 10, 350.
[2] Al-Omari, A.I. and Haq, A. (2016), Entropy estimation and goodness-of- t tests for the inverse Gaussian and Laplace distributions using paired ranked set sampling, Journal of Statistical Computation and Simulation, 86, 2262-2272.
[3] Anderson, T.W. and Darling, D.A. (1954), A test of goodness of t, Journal of American Statistical Association, 49, 765-769.
[4] Bardsley, W.E. (1980), Note on the use of the inverse Gaussian distribution for wind energy applications, Journal of Applied Meteorology, 19, 1126{1130.
[5] Barndor -Nielsen, O.E. (1994), A note on electrical networks and the inverse Gaussian distribution, Advances in Applied Probability, 26, 63{67.
[6] Chen, Z. (2000), A new two-parameter lifetime distribution with bathtub shape or increasing failure note function, Statistics and Probability Letters, 49, 155{161.
[7] D'Agostino, R.B. and Stephens, M.A. (Eds.) (1986), Goodness-of- t Techniques, New York: Marcel Dekker.
[8] Dhillon, B.S. (1981), Lifetime Distributions, IEEE Transactions on Reliability, 30 457{459.
[9] Folks, J.L. and Chhikara, R.S. (1978), The inverse Gaussian distribution and its statistical application-a review, Journal of the Royal Statistical Society of Great Britain, 40, 263{289.
[10] Folks, J.L. and Chhikara, R.S. (1989), In: The Inverse Gaussian Distribution, Theory, Methodology and Applications. Marcel Dekker, New York.
[11] Gunes, H., Dietz, D.C., Auclair, P.F., and Moore, A.H. (1997), Modi ed goodness-of- t tests for the inverse Gaussian distribution, Computational statistics & Data analysis, 24, 63-77.
[12] Henze, N., and Klar, B. (2002), Goodness-of- t tests for the inverse Gaussian distribution based on the empirical Laplace transform, Annals of the Institute of Statistical Mathematics, 54, 425-444.
[13] Huber-Carol, C., Balakrishnan, N., Nikulin, M. S. and Mesbah, M. (2002), Goodnessof- t tests and model validity, Boston, Basel, Berlin: Birkhauser.
[14] Johnson, N.L., Kotz, S. and Balakrishnan, N. (1994), Continuous Univariate Distributions, 1 and 2, Wiley, New York.
[15] Kolmogorov, A.N. (1933), Sulla Determinazione Empirica di une legge di Distribuzione. Giornale dell'Intituto Italiano degli Attuari, 4, 83-91.
[16] Kuiper, N.H. (1960), Tests concerning random points on a circle, Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series A, 63, 38-47.
[17] Ofosuhene, P. (2020), The energy goodness-of- t test for the inverse Gaussian distribution (Doctoral dissertation, Bowling Green State University).
[18] O'Reilly, F.J. and Rueda, R. (1992), Goodness of t for the inverse Gaussian distribution, Canadian Journal of Statistics, 20, 387-397.
[19] Seshadri, V. (1999), In: The Inverse Gaussian Distribution: Statistical Theory and Applications, Springer, New York.
[20] Torabi, H., Montazeri, N.H. and Grane, A. (2016), A test for normality based on the empirical distribution function, SORT, 40, 55-88.
[21] Torabi, H., Montazeri, N.H. and Grane, A. (2018), A wide review on exponentiality tests and two competitive proposals with application on reliability, Journal of Statistical Computation and Simulation, 88, 108-139.
[22] von Mises, R. (1931), Wahrscheinlichkeitsrechnung und ihre Anwendung in der Statistik und theoretischen Physik, Leipzig and Vienna: Deuticke.
[23] Watson, G.S. (1961), Goodness of t tests on a circle, Biometrika, 48, 109-114.
[24] Zhang, J. (2002), Powerful goodness-of- t tests based on the likelihood ratio, Journal of Royal Statistical Society, Series B, 64, 281-294.