Ricci-Bourguignon flow on an open surface

Document Type : Research Paper


Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.


In this paper, we investigate the normalized Ricci-Bourguignon flow with incomplete initial metric on an open surface. We show that such a flow converges exponentially to a metric with constant Gaussian curvature if the initial metric is suitable. In particular, if the initial metric is complete then the metrics converge to the standard hyperbolic metric.


Main Subjects

[1] Azami, S. (2018). First eigenvalues of geometric operator under the Ricci-Bourguignon flow, J. Indones. Math. Soc. 24, 51-60. https://doi.org/10.22342/jims.24.1.434.51-60
[2] Bourguignon, J. P. (1981). Ricci curvature and Einstein metrics, Global di erentialgeometry and global analysis (Berlin,1979) Lecture notes in Math. vol. 838, Springer, Berlin, 42-63. https://doi.org/10.1007/BFb0088841
[3] Catino, G., Cremaschi, L., Djadli, Z., Mantegazza, C., & Mazzieri, L. (2015). The Ricci-Bourguignon flow, Paci c J. Math. 287(2), 337-370. https://doi.org/10.2140/pjm.2017.287.337
[4] Chen, B., He, Q., & Zeng, F. (2018). Monotonicity of eigenvalues of geometric operators along the Ricci-Bourguignon   flow. Paci c J. Math. 296, 1-20. https://doi.org/10.2140/pjm.2018.296.1
[5] Chow, B. (1991). The Ricci flow on the 2ô€€€sphere, J. Di . Geom. 33, 325-334. https://doi.org/10.4310/jdg/1214446319
[6] Cortissoz, J. C., & Murcia, A. (2019). The Ricci flow on surfaces with boundary, Communications in Analysis and geometry, 27 (2) , 377-420. https://doi.org/10.4310/CAG.2019.v27.n2.a5
[7] Dubedat, J., & Shen, H. (2022). Stochastic Ricci flow on comapct surfaces , International mathematics research notes, 2022 (16), 12253-12301. https://doi.org/10.1093/imrn/rnab015
[8] Giesen, G., & Topping, P. ( 2010). Ricci flow of negatively curved incomplete surfaces, Calculus of variations and partial di erential equations, (3-4) (38), 357-367. https://doi.org/10.1007/s00526-009-0290-x
[9] Hamilton, R. (1988). The Ricci flow on surfaces, Mathematics and general Relativity, Contemprary mathematics, 71, 237-261. https://doi.org/10.1090/conm/071/954419
[10] Ji, L.-Z., Mazzeo, R., & Sesum, N. (2009). Ricci flow on surfaces with cusps, Mathematische Annalen, 4 (345), 819-834.  https://doi.org/10.1007/s00208-009-0377-x
[11] Jurchescu, M. (1961). Bordered Riemann surfaces, Math. Annalen, 143, 264-292. https://doi.org/10.1007/BF01342982
[12] Katsinis, D., Mitsoulas, L., & Pastras, G. (2020).Geometric flow description of minimal surfaces, Phys. Rev. D, 101, 08615. https://link.aps.org/doi/10.1103/PhysRevD.101.086015
[13] Liang, Q., & Zhu, A. (2019). On the condition to extend Ricci-Bourguignon flow, Non-linear Anal. 179, 344-353. https://doi.org/10.1016/j.na.2018.09.002
[14] Massey, W. ( 1977). Algebraic topology: an introduction, Reprint of the 1967 edition, Graduate Texts in Mathematics, Vol. 56, Springer-Verlag, NewYork-Heidelberg.
[15] Shi, W.-X. (1980). Deforming the metric on complete Riemannian manifolds, J. Di . Geom., 30(1), 223-301. https://doi.org/10.4310/jdg/1214443292
[16] Yau, S.-T. (1978). A general Schwarz lemma for Kahler manifolds, Amer. J. Math., 100(1), 197-203. https://doi.org/10.2307/2373880
[17] Yin, H. (2009). Normalized Ricci flow on nonparabolic surfaces, Ann. Glob. Anal. Geom., 36, 81-104. https://doi.org/10.1007/s10455-008-9150-8
[18] Zhu, X. (2013). Ricci flow on open surface, J. Math. Sci. Univ. Tokyo, 20, 435-444.