Ricci-Bourguignon flow on an open surface

Document Type : Research Paper

Author

Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.

Abstract

In this paper, we investigate the normalized Ricci-Bourguignon flow with incomplete initial metric on an open surface. We show that such a flow converges exponentially to a metric with constant Gaussian curvature if the initial metric is suitable. In particular, if the initial metric is complete then the metrics converge to the standard hyperbolic metric.

Keywords

Main Subjects


[1] Azami, S. (2018). First eigenvalues of geometric operator under the Ricci-Bourguignon flow, J. Indones. Math. Soc. 24, 51-60. https://doi.org/10.22342/jims.24.1.434.51-60
[2] Bourguignon, J. P. (1981). Ricci curvature and Einstein metrics, Global di erentialgeometry and global analysis (Berlin,1979) Lecture notes in Math. vol. 838, Springer, Berlin, 42-63. https://doi.org/10.1007/BFb0088841
[3] Catino, G., Cremaschi, L., Djadli, Z., Mantegazza, C., & Mazzieri, L. (2015). The Ricci-Bourguignon flow, Paci c J. Math. 287(2), 337-370. https://doi.org/10.2140/pjm.2017.287.337
[4] Chen, B., He, Q., & Zeng, F. (2018). Monotonicity of eigenvalues of geometric operators along the Ricci-Bourguignon   flow. Paci c J. Math. 296, 1-20. https://doi.org/10.2140/pjm.2018.296.1
[5] Chow, B. (1991). The Ricci flow on the 2ô€€€sphere, J. Di . Geom. 33, 325-334. https://doi.org/10.4310/jdg/1214446319
[6] Cortissoz, J. C., & Murcia, A. (2019). The Ricci flow on surfaces with boundary, Communications in Analysis and geometry, 27 (2) , 377-420. https://doi.org/10.4310/CAG.2019.v27.n2.a5
[7] Dubedat, J., & Shen, H. (2022). Stochastic Ricci flow on comapct surfaces , International mathematics research notes, 2022 (16), 12253-12301. https://doi.org/10.1093/imrn/rnab015
[8] Giesen, G., & Topping, P. ( 2010). Ricci flow of negatively curved incomplete surfaces, Calculus of variations and partial di erential equations, (3-4) (38), 357-367. https://doi.org/10.1007/s00526-009-0290-x
[9] Hamilton, R. (1988). The Ricci flow on surfaces, Mathematics and general Relativity, Contemprary mathematics, 71, 237-261. https://doi.org/10.1090/conm/071/954419
[10] Ji, L.-Z., Mazzeo, R., & Sesum, N. (2009). Ricci flow on surfaces with cusps, Mathematische Annalen, 4 (345), 819-834.  https://doi.org/10.1007/s00208-009-0377-x
[11] Jurchescu, M. (1961). Bordered Riemann surfaces, Math. Annalen, 143, 264-292. https://doi.org/10.1007/BF01342982
[12] Katsinis, D., Mitsoulas, L., & Pastras, G. (2020).Geometric flow description of minimal surfaces, Phys. Rev. D, 101, 08615. https://link.aps.org/doi/10.1103/PhysRevD.101.086015
[13] Liang, Q., & Zhu, A. (2019). On the condition to extend Ricci-Bourguignon flow, Non-linear Anal. 179, 344-353. https://doi.org/10.1016/j.na.2018.09.002
[14] Massey, W. ( 1977). Algebraic topology: an introduction, Reprint of the 1967 edition, Graduate Texts in Mathematics, Vol. 56, Springer-Verlag, NewYork-Heidelberg.
[15] Shi, W.-X. (1980). Deforming the metric on complete Riemannian manifolds, J. Di . Geom., 30(1), 223-301. https://doi.org/10.4310/jdg/1214443292
[16] Yau, S.-T. (1978). A general Schwarz lemma for Kahler manifolds, Amer. J. Math., 100(1), 197-203. https://doi.org/10.2307/2373880
[17] Yin, H. (2009). Normalized Ricci flow on nonparabolic surfaces, Ann. Glob. Anal. Geom., 36, 81-104. https://doi.org/10.1007/s10455-008-9150-8
[18] Zhu, X. (2013). Ricci flow on open surface, J. Math. Sci. Univ. Tokyo, 20, 435-444.