[2] Bourguignon, J. P. (1981). Ricci curvature and Einstein metrics, Global di erentialgeometry and global analysis (Berlin,1979) Lecture notes in Math. vol. 838, Springer, Berlin, 42-63.
https://doi.org/10.1007/BFb0088841
[3] Catino, G., Cremaschi, L., Djadli, Z., Mantegazza, C., & Mazzieri, L. (2015). The Ricci-Bourguignon flow, Paci c J. Math. 287(2), 337-370.
https://doi.org/10.2140/pjm.2017.287.337
[4] Chen, B., He, Q., & Zeng, F. (2018). Monotonicity of eigenvalues of geometric operators along the Ricci-Bourguignon flow. Paci c J. Math. 296, 1-20.
https://doi.org/10.2140/pjm.2018.296.1
[7] Dubedat, J., & Shen, H. (2022). Stochastic Ricci flow on comapct surfaces , International mathematics research notes, 2022 (16), 12253-12301.
https://doi.org/10.1093/imrn/rnab015
[8] Giesen, G., & Topping, P. ( 2010). Ricci flow of negatively curved incomplete surfaces, Calculus of variations and partial di erential equations, (3-4) (38), 357-367.
https://doi.org/10.1007/s00526-009-0290-x
[14] Massey, W. ( 1977). Algebraic topology: an introduction, Reprint of the 1967 edition, Graduate Texts in Mathematics, Vol. 56, Springer-Verlag, NewYork-Heidelberg.
[18] Zhu, X. (2013). Ricci flow on open surface, J. Math. Sci. Univ. Tokyo, 20, 435-444.