Stability of Deeba and Drygas functional equations in non-Archimedean spaces

Document Type : Research Paper


Department of Mathematical Sciences, Yazd University, Yazd, Iran


In this paper, we  use new techniques to prove Hyers-Ulam  and Hyers-Ulam-Rasiass stability of Deeba, Drygas and logarithmic functional equations in non-Archimedean normed spaces. We generalize some earlier results connected with the stability of these functional equations and inequalities. In addition, we provide some examples to clarify the definitions and theorems.


Main Subjects

[1] Abdollahpour, M.R., & et al. (2019). Hyers-Ulam stability of hypergeometric differential equations, Aequationes Math., 93(4), 691–698.
[2] Abdollahpour,M.R., & et al. (2016). Hyers–Ulam stability of associated Laguerre differential equations in a subclass of analytic functions, J. Math. Anal. Appl., 437(1), 605–612.
[3] Aoki, T. (1950). On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2, 64–66.
[4] Azadi Kenari, H. (2011). Non-Archimedean stability of Cauchy–Jensen type functional equation, Int. J. Nonlinear Anal. Appl., 2(2), 92–102.
[5] Badora R. (2006). On approximate derivations, Math. Inequal. Appl., 2(1), 167–173.
[6] El-Hady, El., & Brzdek, J. (2022). On Ulam stability of functional equations in 2-normed spaces—A survey, Symmetry, 13, 2200–2218.
[7] Dutta, H., Senthil Kumar, B.V., & Sabarinathan S. (2022). Fuzzy stabilities of a new hexic functional equation in various spaces, An. Şţ. Univ. Ovidius Constanţa, 30(3), 143–171.
[8] Yavuz, M., Coşar, F., Günay, F. & Özdemir, F. (2021). A New Mathematical Modeling of the COVID-19 Pandemic Including the Vaccination Campaign, Open Journal of Modelling and Simulation, 9, 299–321.
[9] Kannappan, Pl. (1995). Quadratic functional equation and inner product spaces, Results Math. 27, 368–372.
[10] Kumar, B.V.S., Al-Shaqsi, K., & Dutta, H. (2021). Approximate reciprocal Lie ⋆-derivations, Soft Comput., 25, 14969–14977.
[11] Kumar, B.V.S., Dutta H., & Sabarinathan S. (2021). Stabilities and instabilities of an advanced quartic functional equation in various normed spaces, Math. Methods Appl. Sci. 44(14), 11469–11481.
[12] Eshaghi Gordji, M., & Khodaei, H. (2010). Stability of Functional Equations, LAP Lambert Academic Publishing, Saarbrucken. ISBN:9783843381918
[13] Forti, G.L., Shulman, E. (2020). A comparison among methods for proving stability, Aequationes Math., 94, 547–574.
[14] Gilanyi, A. (2001). Eine zur parallelogrammgleichung äquivalente ungleichung, Aequationes Math., 62(3), 303–309.
[15] Goss, D. (2012). Basic Structures of Function Field Arithmetic, Springer Science & Business Media, 35, ISBN:9783642614804, 3642614809.
[16] Hyers, D.H. (1941). On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27(4), 222–224.
[17] Jung, S.-M. (2011). Hyers–Ulam–Rassias stability of functional equations in nonlinear analysis, Springer Optimization and Its Applications.
[18] Moslehian, M.S. (2007). Stability of functional equations in non-Archimedean spaces, Appl. Anal. Discrete Math., 1(2), 325–334.
[19] Nie, D., Niazi, A.U.K., & Ahmed, B. (2020). On local generalized Ulam–Hyers stability for nonlinear fractional functional differential equation, Math. Prob. Eng.
[20] Park, C., & Rassias, J.M. (2009). Stability of the Jensen-type functional equation in C∗-algebras: a fixed point approach, Abstr. Appl. Anal.
[21] Perez-Garcia C. & Schikhof, W.H. (2012). New examples of non-Archimedean Banach spaces and applications, Canad. Math. Bull. 55(4), 821–829.
[22] Rassias, Th.M. (1978). On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(2), 297–300.
[23] Sahoo P.K., & Kannappan, P.L. (2011), Introduction to Functional Equations, CRC Press, Boca Raton, Florida. ISBN: 1138114553
[24] Schneider, P. (2002). Nonarchimedean Functional Analysis, Springer Berlin, Heidelberg. ISBN: 978-3-642-07640-4
[25] Senthil Kumar B.V. & Sabarinathan, S. (2022). A fixed point approach to non-Archimedean stabilities of IQD and IQA functional equations, Thai J. Math., 20(1),69–78. ISSN: 1686-0209
[26] Ulam, S.M. (1964). Problems in Modern Mathematics, Science Editions, John Wiley Sons, Inc., New York.
[27] Vladimirov, V.S., Volovichmm I.V., & Zelenov, E.I. (1994). p-Adic Analysis and Mathematical Physics, Nauka, Moscow.