[1] Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of Statistics, 12, 171–178.
[2] Castaneda-Avila, MA., Ulbricht, CM., & Epstein, MM. (2021). Risk factors for monoclonal gammopathy of undetermined significance: a systematic review. Annals of Hematology, 100, 855–863.
https://doi.org/10.1007/s00277-021-04400-7
[3] Epstein, MM., Saphirak, C., Zhou, Y., Leblanc, C., Rosmarin, AG., Ash, A., Singh, S., Fisher, K., Birmann, B., & Gurwitz, JH. (2019). Identifying monoclonal gammopathy of undetermined significance in electronic health data, 29, 69-76.
https://doi:10.1002/pds.4912
[4] Fernandez, C., & Steel, MFJ. (1998). On Bayesian modeling of fat tails and skewness. Journal of the American Statistical Association, 93, 359-371.
https://doi.org/10.2307/2669632
[5] G´omez, HW., Venegas, O., & Bolfarine, H. (2007). Skew-symmetric distributions generated by the distribution function of the normal distribution. Environmetrics, 18, 395–407.
https://doi.org/10.1002/env.817
[7] Henze, N. (1986). A probabilistic representation of the skew-normal distribution. Scandinavian Journal of Statistics, 13, 271-275.
[8] Kotz, S., Kozubowski, TJ., & Podg´orski, K. (2001). The Laplace distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance. Birkh¨auser, Boston.
https://doi.org/10.1007/978-1-4612-0173-15
[9] Krupskii, P., Joe, H., Lee, D., & Genton MG. (2018). Extreme-value limit of the convolution of exponential and multivariate normal distributions: Link to the H¨usler–Reiß distribution. Multivariate Analysis, 163, 80-95.
https://doi.org/10.1016/j.jmva.2017.10.006
[10] McLachlan, GJ., Krishnan, T., & Ng, SK. (2004). The EM algorithm. Technical report, Humboldt-Universit¨at Berlin, Center for Applied Statistics and Economics (CASE).
[11] Naderi, M., Arabpour, A., & Jamalizadeh, A. (2018). Multivariate normal mean-variance mixture distribution based on Lindley distribution, Comm. Statist. Simulation Comput. 48, 1179–1192.
https://doi.org/10.1080/03610918.2017.1307400
[12] Naderi, M., Mirfarah, E., Wang, WL., & Lin, TI. (2023). Robust mixture regression modeling based on the normal mean-variance mixture distributions. Computational Statistics & Data Analysis, 180, p.107661.
https://doi.org/10.1016/j.csda.2022.107661
[13] Negarestani, H., Jamalizadeh, A., Shafiei, S., & Balakrishnan, N. (2018). Mean mixtures of normal distributions: properties, inference and application. Metrika, 82, 501–528.
https://doi.org/10.1007/s00184-018-0692-x
[14] Pourmousa, R., Jamalizadeh, A., & Rezapour, M. (2015). Multivariate normal mean variance mixture distribution based on Birnbaum-Saunders distribution. Journal of Statistical Computation and Simulation, 85, 2736–2749.
https://doi.org/10.1080/00949655.2014.937435
[15] Shanker, R., Fesshaye, H., & Selvaraj, S. (2015). On modeling of lifetimes data using exponential and Lindley distributions. Biometrics & Biostatistics International Journal, 2(5), 140-147.
https://doi.org/10.15406/bbij.2015.02.00042