The construction of fractions of $\Gamma$-module over commutative $\Gamma$-ring

Document Type : Research Paper


1 Department of Mathematical Sciences, Yazd University, Yazd, Iran

2 Department of Mathematics, Payame Noor University, Tehran, Iran


The aim of this paper is to construct fraction of $\Gamma$-module over commutative $\Gamma$-ring. There should be an appropriate set $S$ of elements in a $\Gamma$-ring $R$ to be used as $\Gamma$-module of fractions. Then we study the homomorphisms of $\Gamma$-module which can lead to related basic results. We show that for every $\Gamma$-module $M$, $S^{-1}(0:_R M)=(0:_{S^{-1}R} S^{-1}M).$ Also, if $M$ is a finitely generated $R_\Gamma$-module, then $S^{-1}M$ is finitely generated. 


Main Subjects

[1] Ameri R., & Sadeghi, R. (2010). Gamma modules. Ratio Mathematica, 20, 127–147.
[2] Atiyah, M.F. (1969). Introduction to commutative algebra. Addison-Westey Series in Mathematics, Universiy of oxford.
[3] Barnes, W.E. (1966). On the Γ-ring of Nobusawa. Pacific J. Math., 18, 411–442.
[4] Ma, X., Zhan J., & Leoreanu-Fotea, V. (2010). On (fuzzy) isomorphism theorems of Γ-hyperrings. Computers and Mathematics with Applications, 60, 2594–2600. doi:j.camwa.2010.08.075
[5] Ma, X., & Zhan J. (2010). Fuzzy h-ideals in h-hemiregular and h-semisimple Γ-hemirings, Neural Computing & Applications, 19, 477–485. doi: 10.1007/s00521-010-0341-4
[6] Nobusawa, N. (1964). On the generalization of the ring theory. Osaka J. Math., 1, 81–89.
[7] Ostadhadi-Dehkordi, S. (2016). Quotient (Γ, R)-hypermodules and homology algebra. Afr. Mat., 27, 353–364.doi: 10.1007/s13370-015-0347-2
[8] Paul, A.C,. & Uddin, S. (2010). Lie structure in simple gamma ring, Int. J. of pure and appl. sci. and tech., 63–70.
[9] Selvarage, C., Petchimuthu, S., & Racheal, G. (2008). strongly prime gamma ring and Morita equvalence of rings. Southeast Asian Bulletin of Math., 19, 1137–1147.
[10] Tabatabaee, Z.S., & Roodbarylor, T. (2018). The construction of fraction gamma rings and local gamma rings by using commutative gamma rings. Journal of Mathematical Extension, 12(2), 73–86.
[11] Ullah, Z., & Chaudhry, M.A. (2012). On K-centralizers of semiprime gamma rings. Int. J. Algebra, 6, 1001-1010.
[12] Zhan, J., & Shum, K.P. (2011). On fuzzy h-ideals in Γ-hemirings. Neural Computing & Applications, 20, 495–505. doi: 10.1007/s00521-011-0556-z