[2] Alias, L. J. & G¨urb¨uz, N. (2006). An extension of Takahashi theorem for the linearized * operators of the higher order mean curvatures. Geom. Ded., 121, 113-127.
http://doi.org/10.1007/s10711-006-9093-9
[4] Caddeo, R., Montaldo, S., Oniciuc, C. & Piu, P. (2014). Surfaces in three-dimensional space forms with divergence-free stress-bienergy tensor. Ann. Mat. Pura Appl., 193(2), 529550.
http://doi.org/10.1007/s10231-012-0289-3
[5] Chen, B. Y. (1991). Some open problems and conjectures on submanifolds of finite type. Soochow J. Math., 17, 169188.
[9] Fetcu, D. & Oniciuc, C. (2022). Biharmonic and biconservative hypersurfaces in space forms. Diff. Geom. and Global anal. in honor of Tadashi Nagano, 6590. Contemp. Math., 777, Amer. Math. Soc., (Providence), RI.
https://doi.org/10.48550/arXiv.2012.12476
[10] Fetcu, D., Oniciuc, C. & Pinheiro, A. L. (2015). CMC biconservative surfaces in Sn ×R and Hn × R. J. Math. Anal. Appl., 425, 588-609. doi.org/10.1016/j.jmaa.2014.12.051.
[11] Fu, Y. & Turgay, N. C. (2016). Complete classification of biconservative hypersurfaces with diagonalizable shape operator in Minkowaski 4-space. Inter. J. of Math., 27(5), 1650041.
https://doi.org/10.1142/S0129167X16500415.
[14] Jiang, G. Y. (1987). The conservation law for 2-harmonic maps between Riemannian manifolds. Acta Math. Sin., 30, 220225.
[17] O’Neill, B. (1983). Semi-Riemannian Geometry with Applicatins to Relativity (2nd ed.), Acad. Press Inc.
[18] Petrov, A. Z. (1969). Einstein Spaces, Pergamon Press, Hungary, Oxford and New York.
[20] Pashaie, F. & Kashani, S. M. B. (2014). Timelike hypersurfaces in the Lorentzian standard space forms satisfying Lkx = Ax + b. Mediterr. J. Math., 11(2), 755-773.
http://doi.org/10.1007/s00009-013-0336-3.
[24] Reilly, R. C. (1973). Variational properties of functions of the mean curvatures for hypersurfaces in space forms. J.Differential Geom., 8(3), 465-477.
http://doi.org/10.4310/jdg/1214431802.