Schur multiplier operator and matrix inequalities

Document Type : Research Paper

Author

Department of Pure Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran.

Abstract

In this note we obtain a reverse version of the Haagerup Theorem. In particular, if $ A \in \mathbb{M}_{n}$ has a $ 2\times2- $ principal submatrix as $ \left[ \begin{array}{cc}
1& \alpha \\
\beta & 1\\
\end{array}
\right]$ with $ \beta \neq \bar{\alpha}, $ then $ \Vert S_{A} \Vert > 1$ where the operator $ S_{A}:\mathbb{M}_{n}\longrightarrow \mathbb{M}_{n} $ is defined by $S_{A}(B) := A \circ B $ where $ "\circ " $ stands for Schur product.

Keywords

Main Subjects


[1] Aghamollaei, Gh., & Sheikhhosseini, A. (2015). Some numerical radius inequalities with positive definite functions. Bulletin of the Iranian Mathematical Society, 41, 889-900.
[2] Ando, T., & Okubo, K. (1991). Induced norms of the Schur multiplication operator. Linear Algebra and its Applications, 147, 181-199.
[3] Bakherad, M., Krnic, M., & Sal Moslehian, M. (2016). Reverse Young-type inequalities for matrices and operators. Rocky Mountain Journal of Mathematics, 46, 1089-1104.
[4] Bhatia, R. (2007). Positive Definite Matrices, Princeton University Press.
[5] Khosravi, M. & Sheikhhosseini, A. (2015). Shur multiplier norm of product of matrices. Wavelets and Linear Algebra, 2, 49-54.
[6] Sababheh, M. (2018). Heinz-type numerical radii inequalities. Linear and Multilinear Algebra, 67, 953-964.
[7] Salemi A. & Sheikhhosseini, A. (2013). Matrix Young numerical radius inequalities. Mathematical Inequalities and Applications, 16, 783-791.
[8] Salemi, A. & Sheikhhosseini, A. (2014). On reversing of the modified Young inequality. Annals of Functional Analysis, 5, 69-75.
[9] Sheikhhosseini, A. (2017). An AM-GM mean inequality related to numerical redius of matrices. Konuralp Journal of Mathematics, 5, 116-122.
[10] Xu, K. Pedrycz, Z., W., Li, Z. & Nie, W. (2019). High-accuracy signal subspace separation algorithm based on Gaussian kernel soft partition, IEEE Transactions on Industrial Electronics, 66(1), 491-499.