[1] Bayati, H., Dowlatshahi, M. B., & Hashemi, A. (2022). MSSL: A memetic-based sparse
subspace learning algorithm for multi-label classification. International Journal of Machine
Learning and Cybernetics, 13(11), 3607–3624. https://doi.org/10.1007/s13042-
022-01616-5.
[2] Bolón-Canedo, V., & Alonso-Betanzos, A. (2018). Evaluation of Ensembles for Feature
Selection. In V. Bolón-Canedo & A. Alonso-Betanzos (Eds.), Recent Advances
in Ensembles for Feature Selection (pp. 97–113). Springer International Publishing.
https://doi.org/10.1007/978-3-319-90080-3-6.
[3] Dhal, P., & Azad, C. (2022). A comprehensive survey on feature selection in
the various fields of machine learning. Applied Intelligence, 52(4), 4543–4581.
https://doi.org/10.1007/s10489-021-02550-9.
[4] Dowlatshahi, M. B., & Hashemi, A. (2023). Unsupervised feature selection: A fuzzy
multi-criteria decision-making approach. Iranian Journal of Fuzzy Systems, 20(7), 55–
70.
https://doi.org/10.22111/IJFS.2023.7630.
[5] Dowlatshahi, M. B., Zare-Chahooki, M. A., Beiranvand, S., & Hashemi, A.
(2022). GKRR: A gravitational-based kernel ridge regression for software development
effort estimation. Journal of Mahani Mathematical Research, 11(3), 147–174.
https://doi.org/10.22103/jmmr.2022.18988.1202.
[6] Eskandari, S., & Seifaddini, M. (2023). Online and offline streaming feature selection
methods with bat algorithm for redundancy analysis. Pattern Recognition, 133, 109007.
https://doi.org/10.1016/j.patcog.2022.109007.
[7] Friedman, M. (1940). A Comparison of Alternative Tests of Significance for the
Problem of m Rankings. The Annals of Mathematical Statistics, 11(1), 86–92.
https://doi.org/10.1214/aoms/1177731944.
[8] Hashemi, A., Bagher Dowlatshahi, M., & Nezamabadi-pour, H. (2021). A pareto-based
ensemble of feature selection algorithms. Expert Systems with Applications, 180, 115130.
https://doi.org/10.1016/j.eswa.2021.115130.
[9] Hashemi, A., Bagher Dowlatshahi, M., & Nezamabadi-pour, H. (2021). An efficient
Pareto-based feature selection algorithm for multi-label classification. Information Sciences,
581, 428–447. https://doi.org/10.1016/j.ins.2021.09.052.
[10] Hashemi, A., Dowlatshahi, M. B., & Nezamabadi-pour, H. (2021). Minimum redundancy
maximum relevance ensemble feature selection: A bi-objective Pareto-based approach.
Journal of Soft Computing and Information Technology. https://jscit.nit.ac.ir/article-
138958-en.html.
[11] Hashemi, A., Dowlatshahi, M. B., & Nezamabadi-pour, H. (2021). VMFS: A VIKORbased
multi-target feature selection. Expert Systems with Applications, 182, 115224.
https://doi.org/10.1016/j.eswa.2021.115224.
[12] Hashemi, A., Dowlatshahi, M. B., & Nezamabadi-pour, H. (2022). Ensemble of feature
selection algorithms: A multi-criteria decision-making approach. International Journal
of Machine Learning and Cybernetics, 13(1), 49–69. https://doi.org/10.1007/s13042-
021-01347-z.
[13] Hashemi, A., Joodaki, M., Joodaki, N. Z., & Dowlatshahi, M. B. (2022). Ant colony optimization
equipped with an ensemble of heuristics through multi-criteria decision making:
A case study in ensemble feature selection. Applied Soft Computing, 124, 109046.
https://doi.org/10.1016/j.asoc.2022.109046.
[14] Hashemi, A., Pajoohan, M.-R., & Dowlatshahi, M. B. (2022). Online streaming feature
selection based on Sugeno fuzzy integral. 2022 9th Iranian Joint Congress on Fuzzy and
Intelligent Systems (CFIS), 1–6. https://doi.org/10.1109/CFIS54774.2022.9756477.
[15] Hashemi, A., Pajoohan, M.-R., & Dowlatshahi, M. B. (2023). An election strategy for
online streaming feature selection. 28th International Computer Conference, Computer
Society of Iran (CSICC), 01–04. https://doi.org/10.1109/CSICC58665.2023.10105319.
[16] Hu, X., Zhou, P., Li, P., Wang, J., & Wu, X. (2018). A survey on online feature
selection with streaming features. Frontiers of Computer Science, 12(3), 479–493.
https://doi.org/10.1007/s11704-016-5489-3.
[17] Joodaki, M., Dowlatshahi, M. B., & Joodaki, N. Z. (2021). An ensemble feature selection
algorithm based on PageRank centrality and fuzzy logic. Knowledge-Based Systems, 233,
107538. https://doi.org/10.1016/j.knosys.2021.107538.
[18] Kashef, S., & Nezamabadi-pour, H. (2019). A label-specific multi-label feature selection
algorithm based on the Pareto dominance concept. Pattern Recognition, 88, 654–667.
https://doi.org/10.1016/j.patcog.2018.12.020.
[19] Krzeszowska-Zakrzewska, B. (2015). Fuzzy Pareto Dominance in Multiple Criteria
Project Scheduling Problem. Multiple Criteria Decision Making, 10, 93–104.
[20] Li, M., Yang, S.,& Liu, X. (2015). Bi-goal evolution for manyobjective
optimization problems. Artificial Intelligence, 228, 45–65.
https://doi.org/10.1016/j.artint.2015.06.007.
[21] Luo, C., Wang, S., Li, T., Chen, H., Lv, J., & Yi, Z. (2023). RHDOFS:
A Distributed Online Algorithm Towards Scalable Streaming Feature Selection.
IEEE Transactions on Parallel and Distributed Systems, 34(6), 1830–1847.
https://doi.org/10.1109/TPDS.2023.3265974.
[22] Miri, M., Dowlatshahi, M. B., Hashemi, A., Rafsanjani, M. K., Gupta, B. B., & Alhalabi,
W. (2022). Ensemble feature selection for multi-label text classification: An intelligent
order statistics approach. International Journal of Intelligent Systems, 37(12), 11319–
11341. https://doi.org/10.1002/int.23044.
[23] Pajoohan, M.-R., Hashemi, A., & Dowlatshahi, M. B. (2022). An online streaming
feature selection method based on the Choquet fuzzy integral. Fuzzy Systems and Its
Applications, 5(1), 161–185. https://doi.org/10.22034/jfsa.2022.331660.1116.
[24] Prajapati, A. (2021). Two-Archive Fuzzy-Pareto-Dominance Swarm Optimization for
Many-Objective Software Architecture Reconstruction. Arabian Journal for Science and
Engineering, 46(4), 3503–3518. https://doi.org/10.1007/s13369-020-05147-5.
[25] Rafie, A., Moradi, P., & Ghaderzadeh, A. (2023). A Multi-Objective online streaming
Multi-Label feature selection using mutual information. Expert Systems with Applications,
216, 119428. https://doi.org/10.1016/j.eswa.2022.119428.
[26] Rahmaninia, M., & Moradi, P. (2018). OSFSMI: Online stream feature selection
method based on mutual information. Applied Soft Computing, 68, 733–746.
https://doi.org/10.1016/j.asoc.2017.08.034.
[27] Serrano-Guerrero, J., Romero, F. P., & Olivas, J. A. (2021). Fuzzy logic applied
to opinion mining: A review. Knowledge-Based Systems, 222, 107018.
https://doi.org/10.1016/j.knosys.2021.107018.
[28] Suryanarayan, P., Subramanian, A., & Mandalapu, D. (2010). Dynamic Hand Pose
Recognition Using Depth Data. 20th International Conference on Pattern Recognition,
3105–3108. https://doi.org/10.1109/ICPR.2010.760.
[29] Talbi, E. (2009). Metaheuristics: From design to implementation. John Wiley & Sons.
[30] Wang, J., Zhao, P., Hoi, S. C. H., & Jin, R. (2014). Online Feature Selection and Its
Applications. IEEE Transactions on Knowledge and Data Engineering, 26(3), 698–710.
https://doi.org/10.1109/TKDE.2013.32.
[31] Wu, D., He, Y., Luo, X., & Zhou, M. (2022). A Latent Factor Analysis-
Based Approach to Online Sparse Streaming Feature Selection. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 52(11), 6744–6758.
https://doi.org/10.1109/TSMC.2021.3096065.
[32] You, D., Sun, M., Liang, S., Li, R., Wang, Y., Xiao, J., Yuan, F., Shen, L., & Wu,
X. (2022). Online feature selection for multi-source streaming features. Information Sciences,
590, 267–295. https://doi.org/10.1016/j.ins.2022.01.008.
[33] Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.
https://doi.org/10.1016/S0019-9958(65)90241-X.
[34] Zaman, E. A. K., Mohamed, A., & Ahmad, A. (2022). Feature selection for online
streaming high-dimensional data: A state-of-the-art review. Applied Soft Computing,
127, 109355. https://doi.org/10.1016/j.asoc.2022.109355.
[35] Zhou, J., P. Foster, D., A. Stine, R., & H. Ungar, L. (2006). Streamwise
feature selection. Journal of Machine Learning Research, 3(2), 1532–4435.
https://dl.acm.org/doi/abs/10.5555/1248547.1248614.
[36] Zhou, P., Hu, X., Li, P., & Wu, X. (2019). OFS-Density: A novel
online streaming feature selection method. Pattern Recognition, 86, 48–61.
https://doi.org/10.1016/j.patcog.2018.08.009.
[37] Zhou, P., Hu, X., Li, P., & Wu, X. (2019). Online streaming feature selection
using adapted Neighborhood Rough Set. Information Sciences, 481, 258–279.
https://doi.org/10.1016/j.ins.2018.12.074.
[38] Zhou, P., Zhang, Y., Li, P., & Wu, X. (2022). General assembly framework for online
streaming feature selection via Rough Set models. Expert Systems with Applications,
204, 117520. https://doi.org/10.1016/j.eswa.2022.117520.
[39] ZhouPeng, ZhaoShu, YanYuanting, & WuXindong. (2022). Online Scalable Streaming
Feature Selection via Dynamic Decision. ACM Transactions on Knowledge Discovery
from Data (TKDD), 16(5), 1–20. https://doi.org/10.1145/3502737.