Some codes and designs invariant under the groups $S_7$ and $S_8$

Document Type : Research Paper

Author

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan, Iran

Abstract

We use the Key-Moori Method 1 and examine 1-designs and codes from the representations of the alternating group $A_7$. It is shown that a self-dual symmetric 2-$(35,18,9)$ design and an optimal even binary $[21,14,4]$ LCD code are found such that they are invariant under the full automorphism groups $S_8$ and $S_7$, respectively. Moreover, designs with parameters 1-$(21,l,k_{1,l})$ and 1-$(35,l,k_{2,l})$ are obtained, where $\omega$ is a codeword, $l=wt(\omega)$, $k_{1,l}=l|\omega^{S_7}|/21$ and $k_{2,l}=l|\omega^{S_7}|/35$. It is seen that there exist a 2-$(21,5,12)$ design with the full automorphism group $S_7$ among these 1-designs.

Keywords

Main Subjects


[1] Assmus Jr., EF, & Key, JD. (1992). Designs and Their Codes, Cambridge University Press, Cambridge.
[2] Cannon, J., Bosma, W., Fieker, C., & Steel, A. (2013). Handbook of Magma Functions. Version 2.19, Sydney. http://www.magma.maths.usyd.edu.au/magma/.
[3] Colbourn, CJ, & Dinitz, JH. (2007). Handbook of Combinatorial Designs. Chapman & Hall/CRC, 2nd edition, Boca Raton.
[4] Conway, JH, Curtis, RT, Norton, SP, Parker, RA, & Wilson, RA. (1985). Atlas of Finite Groups. Oxford University Press, Oxford.
[5] Darafsheh, MR. (2006). Designs from the group PSL2(q), q even. Des. Codes Cryptogr., 39, 311-316. https://doi.org/10.1007/s10623-005-4926-3
[6] Darafsheh, MR, Ashra , AR, & Khademi, M. (2008). Some designs related to group actions. Ars. Combin., 86, 65-75.
[7] Darafsheh, MR, Ashra , AR, & Khademi, M. (2009). On designs constructed by group actions. J. Combin. Math. Combin. Comput., 70, 235-245.
[8] Darafsheh, MR, Iranmanesh, A., & Kahkeshani, R. (2009). Some designs invariant under the groups S8 and A9. Des. Codes Cryptogr., 51, 211-223. https://doi.org/10.1007/s10623-008-9256-9
[9] Darafsheh, MR, Iranmanesh, A., & Kahkeshani, R. (2009). Designs from the groups PSL2(q) for certain q. Quaest. Math., 32(3), 297-306. https://doi.org/10.2989/qm.2009.32.3.2.903
[10] Darafsheh, MR, & Kahkeshani, R. (2022). Ternary codes from primitive representations of the group PSL2(9) and a new 2-(15; 7; 36) design. J. Indian Math. Soc., 89(1-2), 19-31. https://doi.org/10.18311/jims/2022/23538
[11] Grassl, M. (2022). Bounds on the minimum distance of linear codes. Available online at http://www.codetables.de
[12] Kahkeshani, R. (2018). 1-Designs from the group PSL2(59) and their automorphism groups. Math. Interdisc. Res., 3(2), 147-158. https://doi.org/10.22052/MIR.2017.68740.1048
[13] Kahkeshani, R. (2020). On some designs constructed from the groups PSL2(q), q =53; 61; 64. Alg. Struc. Appl., 7(1), 59-67. https://doi.org/10.22034/AS.2020.1718
[14] Kahkeshani, R. (2022). Quaternary codes and a class of 2-designs invariant under the group A8. Alg. Struc. Appl., 9(1), 1-12. https://doi.org/10.22034/AS.2021.2254
[15] Kahkeshani, R. (2022). 1-Designs Constructed from the Groups PSL2(81) and PSL2(89). J. Mahani Math. Res., 11(2), 1-8. https://doi.org/10.22103/JMMRC.2022.18186.1166
[16] Kahkeshani, R., Darafsheh, MR, & Iranmanesh, A. (2009). Self-dual designs and their binary codes obtained from the group PSL2(13). Creat. Math. Inform., 18(2), 172-181.
[17] Key JD, & Moori, J. (2002). Designs, codes and graphs from the Janko groups J1 and J2. J. Combin. Math. Combin. Comput., 40, 143-159.
[18] Key, JD, & Moori, J. (2008). Correction to: \Key, JD, & Moori, J. (2002). Designs, codes and graphs from the Janko groups J1 and J2. J. Combin. Math. Combin. Comput., 40, 143-159". J. Combin. Math. Combin. Comput., 64, 153.
[19] MacWilliams, FJ, & Sloane, NJA. (1993). The Theory of Error-Correcting Codes. North-Holland Publishing Company, Amsterdam.
[20] Moori, J., & Rodrigues, BG. (2005). A self-orthogonal doubly even code invariant under McL:2. J. Combin. Theory Ser. A, 110, 53-69. https://doi.org/10.1016/j.jcta.2004.10.001
[21] Moori, J., & Saeidi, A. (2017). Some designs and codes invariant under the Tits group. Adv. Math. Commun., 11(1), 77-82. https://doi.org/10.3934/amc.2017003
[22] Moori, J., & Saeidi, A. (2018). Constructing some designs invariant under PSL2(q), q even. Commun. Alg., 46(1), 160-166. https://doi.org/10.1080/00927872.2017.1316854