Index rank-$k$ numerical range of matrices

Document Type : Research Paper

Authors

Department of Mathematics, Payame noor university(PNU), Tehran, Iran

Abstract

We introduce the $\alpha-$higher rank form of the matrix numerical range, which is a special case of the matrix polynomial version of higher rank numerical range. We also, investigate some algebraic and geometrical properties of this set for general and nilpotent matrices. Some examples to confirm the results are brought.

Keywords

Main Subjects


1] Aretaki, A., & Maroulas, J. (2014). On the rank-k numerical range of matrix polynomials, Electronic J. Linear Algebra, 27, 809-820. https://doi.org/10.13001/1081-3810.1960
[2] Choi, M.D., Kribs, D.W., & Zyczkowski, K. (2006). Higher rank numerical ranges and compression problems, Linear Algebra Appl. 418(2-3), 828-839. https://doi.org/10.1016/j.laa.2006.03.019
[3] Choi, M.D., Giesinger, M., Holbrook, J.A., & Kribs, D.W. (2008). Geometry of higher-rank numerical ranges, Linear Multilinear Algebra. 56(1-2), 53-64. https://doi.org/10.1080/03081080701336545
[4] Gustafson, K.E., & Rao, D.K.M. (1997). Numerical Range: The Field of Values of Linear Operators and Matrices, Springer-Verlage.
[5] Horn, R., & Johnson, C. (1991). Topics in Matrix Analysis, Cambridge University Press.
[6] Li, C.K., Mehta, P.P., & Rodman, L. (1994). A Generalized numerical range: The range of a constrained sesquilinear form, Linear Multilinear Algebra, 37(1-3), 25-50. https://doi.org/10.1080/03081089408818311
[7] Li, C.K., & Rodman, L. (1994). Numerical range of matrix polynomials, SIAM J. Matrix Anal. Appl. 15(4), 1256-1265.  https://doi.org/10.1137/S0895479893249630
[8] Safarzadeh, M., & Salemi, A. (2018). DGMRES and index numerical range of matrices, J. Comput. Appl. Math., 335, 349-360. https://doi.org/10.1016/j.cam.2017.12.009