Weak convergence of fixed point iterations in $S$-metric spaces

Document Type : Research Paper

Authors

1 Department of Mathematics, Alagappa University, Karaikudi-630 003, India

2 PG and Research Department of Mathematics, Sethupathy Government Arts College, Ramanathapuram-623502, India

Abstract

This paper extends the notion of weak convergence in metric spaces to the case of S-metric spaces. Moreover, some results on the weak convergence of fixed point iterations of Banach's, Kannan's, Chatterjee's, Reich's, Hardy and Roger's types of contractions on S-metric spaces are obtained. In addition, an example is presented to demonstrate our primary result.

Keywords

Main Subjects


[1] Chatterjea, S. K. ( 1972). Fixed point theorems, Rend. Acad. Bulgare. Sci., 25, 727-730.
[2] Dhage, B. C. (1992). Generalized metric spaces mappings with  xed point, Bull. Calcutta Math. Soc., 84, 329-336.
[3] Dung, N. V., Hieu, N. T., & Radojevic, S. (2014).  xed point theorems for g-monotone maps on partilaly ordered S-metric spaces, Filomat, 28, 1885-1898. DOI:10.2298/FIL1409885D.
[4] G¨ahler, S. (1963). 2-metrische R¨aume und iher topoloische Struktur, Math. Nachr., 26, 115-148.
[5] Gupta, A. (2013). Cyclic contraction on S-metric space, Int. J. Anal. Appl. 3, 119-130.
[6] Hardy, G. E., & Rogers, T. D. (1973). A generalization of a  xed point theorem of Reich Canad. Math. Bull., 16, 201-206.
[7] Kannan, R. (1968). Some results on  xed points, Bull. Calcutta Math. Soc., 60, 71-76.
[8] Khamsi, M. K., & Kirk, W. A. (2001). An introduction to metric spaces and  xed point theory, John Wiley, New York.
[9] Malviya, N., & Fisher, B. (2013). N-Cone metric space and  xed points of asymptotically regular maps, Filomat, 1-11.
[10] Moorthy, C. G., & Siva, G. (2021). Weak order convergence of  xed point iterations of contraction mappings on cone metric spaces, Journal of Physics:Conference Series, 1850, 1-10. doi:10.1088/1742-6596/1850/1/012023
[11] Mustafa, Z., & Sims, B. (2006). A new approach to generalized metric spaces, J. Non-linear Convex Anal., 7, 289{297.
[12] Mustafa, Z., & Sims, B. (2003). Some results concerning D-metric spaces, Proc. Internat. Conf. Fixed Point Theory and Applications, pp. 189{198, Valencia, Spain.
[13] Mustafa, Z., Parvaneh, V., Abbas, M., & Roshan, J. R. (2013). Some coincidence point results for generalized ( ; ')-weakly contractive mappings in ordered G-metric spaces, Fixed Point Theory and Applications, 326. doi: 10.1186/1687-1812-2013-326.
[14] Naidu, S. V. R., Rao, K. P. R., & Srinivasa Rao, N. (2005). On the concepts of balls in a D-metric space, Internat. J. Math. Math. Sci., 133{141. https://doi.org/10.1155/IJMMS.2005.133
[15] Ozgur, N. Y., & Tas, N. (2018). The Picard Theorem on S-Metric Spaces, Acta Mathematica Scientia, 38, 1245-1258. DOI:10.1016/S0252-9602(18)30811-7.
[16] Prudhvi, K. (2015). Fixed point theorems in S-metric spaces, Univers. J. Comput. Math., 3, 19-21. DOI: 10.13189/ujcmj.2015.030201.
[17] Raj, S. I., & Moorthy, C. G. (2013). Weak convergence of  xed point iterations in metric spaces, J. Nonlinear Analysis and optimization, 4, 189-192.
[18] Reich, S. (1971). Some remarks concerning contraction mappings, Canad. Math. Bull., 14, 121-124.
[19] Roshan, J. R., Shobkolaei, N., Sedghi, S., Parvaneh, V., & Radenovic, S. (2014). Common  xed point theorems for three maps in discontinuous Gb-metric spaces, Acta Mathematica Scientia, 34, 1643-1654. https://doi.org/10.1016/S0252-9602(14)60110-7.
[20] Sedghi, S., & Dung, N. V. (2014). Fixed point theorems on S-metric spaces, Mat. Vesnik, 66, 113-124.
[21] Sedghi, S., Shobe, N., & Aliouche, A. (2012). A generalization of  xed point theorems in S-metric spaces, Mat Vesnik, 64, 258-266.
[22] Sedghi, S., Shobe, N., & Zhou, H. (2007). A common  xed point theorem in D-metric spaces, Fixed Point Theory Appl., Article ID 27906, 13 pages. doi:10.1155/2007/27906.
[23] Siva, G. (2022). Fixed points of contraction mappings with variations in S-metric space domains, The Mathematics Student, 91, 173-185.